1,446
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

A universe of human gut-derived bacterial prophages: unveiling the hidden viral players in intestinal microecology

ORCID Icon, , , , , , , ORCID Icon & show all
Article: 2309684 | Received 13 Dec 2023, Accepted 19 Jan 2024, Published online: 01 Feb 2024

References

  • Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021;19(8):501–21. doi:10.1038/s41579-021-00530-x.
  • Yin Z, Zhang S, Wei Y, Wang M, Ma S, Yang S, Wang J, Yuan C, Jiang L, Du Y. et al. Horizontal gene transfer clarifies taxonomic confusion and promotes the genetic diversity and pathogenicity of plesiomonas shigelloides. mSystems. 2020;5(5):e00448–20. doi:10.1128/mSystems.00448-20.
  • Zeng Z, Liu X, Yao J, Guo Y, Li B, Li Y, Jiao N, Wang X. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis. ISME J. 2016;10(12):2787–2800. doi:10.1038/ismej.2016.85.
  • Hu J, Ye H, Wang S, Wang J, Han D. Prophage activation in the intestine: insights into functions and possible applications. Front Microbiol. 2021;12:785634. doi:10.3389/fmicb.2021.785634.
  • Tang K, Wang W, Sun Y, Zhou Y, Wang P, Guo Y, Wang X. Prophage tracer: precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res. 2021;49(22):e128. doi:10.1093/nar/gkab824.
  • Fan X, Li Y, He R, Li Q, He W. Comparative analysis of prophage-like elements in Helicobacter sp. genomes. PeerJ. 2016;4:e2012. doi:10.7717/peerj.2012.
  • Garneau JR, Sekulovic O, Dupuy B, Soutourina O, Monot M, Fortier LC, Dozois CM. High prevalence and genetic diversity of large phiCD211 (phiCDIF1296T)-like prophages in clostridioides difficile. Appl Environ Microbiol. 2018;84(3):e02164–17. doi:10.1128/aem.02164-17.
  • Mottawea W, Duceppe MO, Dupras AA, Usongo V, Jeukens J, Freschi L, Emond-Rheault J-G, Hamel J, Kukavica-Ibrulj I, Boyle B. et al. Salmonella enterica prophage sequence profiles reflect genome diversity and can be used for high discrimination subtyping. Front Microbiol. 2018;9:836. doi:10.3389/fmicb.2018.00836.
  • Bleriot I, Trastoy R, Blasco L, Fernández-Cuenca F, Ambroa A, Fernández-García L, Pacios O, Perez-Nadales E, Torre-Cisneros J, Oteo-Iglesias J. et al. Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-producing clinical strains of Klebsiella pneumoniae. Microb Genom. 2020;6(5):e000369. doi:10.1099/mgen.0.000369.
  • Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun. 2019;10(1):4852. doi:10.1038/s41467-019-12825-y.
  • Abad L, Gauthier CH, Florian I, Jacobs-Sera D, Hatfull GF, Albright MBN. The heterogenous and diverse population of prophages in Mycobacterium genomes. mSystems. 2023;8(5):e0044623. doi:10.1128/msystems.00446-23.
  • Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol. 2022;20(1):49–62. doi:10.1038/s41579-021-00602-y.
  • Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol. 2020;13(2):205–215. doi:10.1038/s41385-019-0250-5.
  • De Sordi L, Lourenço M, Debarbieux L. The battle within: interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host & Microbe. 2019;25(2):210–218. doi:10.1016/j.chom.2019.01.018.
  • Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR, Daly KM, McDonnell SA, Nolan JA, Sutton TDS, Dalmasso M. et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome. 2018;6(1):68. doi:10.1186/s40168-018-0446-z.
  • Li J, Yang F, Xiao M, Li A. Advances and challenges in cataloging the human gut virome. Cell Host & Microbe. 2022;30(7):908–916. doi:10.1016/j.chom.2022.06.003.
  • Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive expansion of human gut bacteriophage diversity. Cell. 2021;184(4):1098–109.e9. doi:10.1016/j.cell.2021.01.029.
  • Nayfach S, Páez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, Proal AD, Fischbach MA, Bhatt AS, Hugenholtz P. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6(7):960–970. doi:10.1038/s41564-021-00928-6.
  • Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host & Microbe. 2020;28(5):724–40.e8. doi:10.1016/j.chom.2020.08.003.
  • Stern A, Mick E, Tirosh I, Sagy O, Sorek R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 2012;22(10):1985–1994. doi:10.1101/gr.138297.112.
  • Ma Y, You X, Mai G, Tokuyasu T, Liu C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome. 2018;6(1):24. doi:10.1186/s40168-018-0410-y.
  • Mann S, Chen YP. Bacterial genomic G+C composition-eliciting environmental adaptation. Genomics. 2010;95(1):7–15. doi:10.1016/j.ygeno.2009.09.002.
  • Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–786. doi:10.1038/nrmicro3564.
  • Bosi E, Mascagni F. Less is more: genome reduction and the emergence of cooperation-implications into the coevolution of microbial communities. Int J Genomics. 2019;2019:2659175. doi:10.1155/2019/2659175.
  • Tan D, Hansen MF, de Carvalho LN, Røder HL, Burmølle M, Middelboe M, Lo Svenningsen S. High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. ISME J. 2020;14(7):1731–1742. doi:10.1038/s41396-020-0641-3.
  • Zafar H, Saier MH Jr. Gut bacteroides species in health and disease. Gut Microbes. 2021;13(1):1–20. doi:10.1080/19490976.2020.1848158.
  • Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol. 2021;19(9):585–599. doi:10.1038/s41579-021-00559-y.
  • Turroni F, Duranti S, Milani C, Lugli GA, van Sinderen D, Ventura M. Bifidobacterium bifidum: a key member of the early human gut microbiota. Microorganisms. 2019;7(11):544. doi:10.3390/microorganisms7110544.
  • Oh JH, Alexander LM, Pan M, Schueler KL, Keller MP, Attie AD, Walter J, van Pijkeren J-P. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont lactobacillus reuteri. Cell Host & Microbe. 2019;25(2):273–84.e6. doi:10.1016/j.chom.2018.11.016.
  • Yang Y, Hu X, Cai S, Hu N, Yuan Y, Wu Y, Wang Y, Mi J, Liao X. Pet cats may shape the antibiotic resistome of their owner’s gut and living environment. Microbiome. 2023;11(1):235. doi:10.1186/s40168-023-01679-8.
  • Inda-Díaz JS, Lund D, Parras-Moltó M, Johnning A, Bengtsson-Palme J, Kristiansson E. Latent antibiotic resistance genes are abundant, diverse, and mobile in human, animal, and environmental microbiomes. Microbiome. 2023;11(1):44. doi:10.1186/s40168-023-01479-0.
  • Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 2017;11(1):237–247. doi:10.1038/ismej.2016.90.
  • Tóth AG, Judge MF, Nagy S, Papp M, Solymosi N. A survey on antimicrobial resistance genes of frequently used probiotic bacteria, 1901 to 2022. Euro Surveill. 2023;28(14):2200272. doi:10.2807/1560-7917.Es.2023.28.14.2200272.
  • Silpe JE, Wong JWH, Owen SV, Baym M, Balskus EP. The bacterial toxin colibactin triggers prophage induction. Nature. 2022;603(7900):315–320. doi:10.1038/s41586-022-04444-3.
  • Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, Coutinho FH, Dinsdale EA, Felts B, Furby KA. et al. Lytic to temperate switching of viral communities. Nature. 2016;531(7595):466–470. doi:10.1038/nature17193.
  • Xue C, Goldenfeld N. Coevolution maintains diversity in the stochastic “kill the winner” model. Phys Rev Lett. 2017;119(26):268101. doi:10.1103/PhysRevLett.119.268101.
  • Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and red queen-like strain dynamics in marine viruses. Nat Microbiol. 2020;5(2):265–271. doi:10.1038/s41564-019-0628-x.
  • Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–1625. doi:10.1101/gr.122705.111.
  • Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003;185(20):6220–6223. doi:10.1128/jb.185.20.6220-6223.2003.
  • Liang G, Zhao C, Zhang H, Mattei L, Sherrill-Mix S, Bittinger K, Kessler LR, Wu GD, Baldassano RN, DeRusso P. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature. 2020;581(7809):470–474. doi:10.1038/s41586-020-2192-1.
  • Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021;19(8):514–527. doi:10.1038/s41579-021-00536-5.
  • Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco C, Zhao G, Fleshner P. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–460. doi:10.1016/j.cell.2015.01.002.
  • Lang S, Demir M, Martin A, Jiang L, Zhang X, Duan Y, Gao B, Wisplinghoff H, Kasper P, Roderburg C. et al. Intestinal virome signature associated with severity of nonalcoholic fatty liver disease. Gastroenterology. 2020;159(5):1839–1852. doi:10.1053/j.gastro.2020.07.005.
  • Jiang L, Lang S, Duan Y, Zhang X, Gao B, Chopyk J, Schwanemann LK, Ventura‐Cots M, Bataller R, Bosques‐Padilla F. et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology. 2020;72(6):2182–2196. doi:10.1002/hep.31459.
  • Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejía JL, Zuffa S, Swann JR, Hansen LH, Vogensen FK, Hansen AK, Nielsen DS. et al. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut. 2020;69(12):2122–2130. doi:10.1136/gutjnl-2019-320005.
  • Licznerska K, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Gąsior T, Węgrzyn A, Węgrzyn G. Oxidative stress in Shiga toxin production by enterohemorrhagic Escherichia coli. Oxid Med Cell Longev. 2016;2016:1–8. doi:10.1155/2016/3578368.
  • Dai D, Zhu J, Sun C, Li M, Liu J, Wu S, Ning K, He L-J, Zhao X-M, Chen W-H. et al. Gmrepo v2: a curated human gut microbiome database with special focus on disease markers and cross-dataset comparison. Nucleic Acids Res. 2022;50:D777–D784. doi:10.1093/nar/gkab1019.
  • Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, Parks DH, Hugenholtz P. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2021;39(1):105–114. doi:10.1038/s41587-020-0603-3.
  • Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8(1):12–24. doi:10.1039/C5AY02550H.
  • Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21. doi:10.1093/nar/gkw387.
  • Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39:W347–52. doi:10.1093/nar/gkr485.
  • Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39(5):578–585. doi:10.1038/s41587-020-00774-7.
  • Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat Commun. 2018;9(1):2542. doi:10.1038/s41467-018-04964-5.
  • Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechno. 2017;35(11):1026–1028. doi:10.1038/nbt.3988.
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. doi:10.1093/sysbio/syq010.
  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11(1):119. doi:10.1186/1471-2105-11-119.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi:10.1016/s0022-2836(05)80360-2.
  • Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46(W1):W246–W251. doi:10.1093/nar/gky425.
  • Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi:10.1093/nar/gkz935.
  • Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50(D1):D912–D917. doi:10.1093/nar/gkab1107.
  • Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, McDonnell SA, Khokhlova EV, Draper LA, Forde A. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host & Microbe. 2019;26(4):527–41.e5. doi:10.1016/j.chom.2019.09.009.
  • Garmaeva S, Gulyaeva A, Sinha T, Shkoporov AN, Clooney AG, Stockdale SR, Spreckels JE, Sutton TDS, Draper LA, Dutilh BE. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep. 2021;35(7):109132. doi:10.1016/j.celrep.2021.109132.