1,494
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Vancomycin relieves tacrolimus-induced hyperglycemia by eliminating gut bacterial beta-glucuronidase enzyme activity

, , , , & ORCID Icon
Article: 2310277 | Received 25 Jun 2023, Accepted 22 Jan 2024, Published online: 08 Feb 2024

References

  • Werzowa J, Hecking M, Haidinger M, Doeller D, Sharif A, Tura A, Säemann MD. The diagnosis of posttransplantation diabetes mellitus: meeting the challenges. Curr Diab Rep. 2015;15(5):15. doi:10.1007/s11892-015-0601-x.
  • Shivaswamy V, Boerner B, Larsen J. Post-transplant diabetes mellitus: causes, treatment, and impact on outcomes. Endocr Rev. 2016;37(1):37–23. doi:10.1210/er.2015-1084.
  • Ahmed SH, Biddle K, Augustine T, Azmi S. Post-Transplantation Diabetes Mellitus. Diabetes Ther. 2020;11(4):779–801. doi:10.1007/s13300-020-00790-5.
  • Chevallier E, Jouve T, Rostaing L, Malvezzi P, Noble J. Pre-existing diabetes and PTDM in kidney transplant recipients: how to handle immunosuppression. Expert Rev Clin Pharmacol. 2021;14(1):55–66. doi:10.1080/17512433.2021.1851596.
  • Kotha S, Lawendy B, Asim S, Gomes C, Yu J, Orchanian-Cheff A, Tomlinson G, Bhat M. Impact of immunosuppression on incidence of post-transplant diabetes mellitus in solid organ transplant recipients: systematic review and meta-analysis. World J Transplant. 2021;11(10):432–442. doi:10.5500/wjt.v11.i10.432.
  • Tong L, Li W, Zhang Y, Zhou F, Zhao Y, Zhao L, Liu J, Song Z, Yu M, Zhou C. et al. Tacrolimus inhibits insulin release and promotes apoptosis of Min6 cells through the inhibition of the PI3K/Akt/mTOR pathway. Mol Med Rep. 2021;24(3):24. doi:10.3892/mmr.2021.12297.
  • Rostambeigi N, Lanza IR, Dzeja PP, Deeds MC, Irving BA, Reddi HV, Madde P, Zhang S, Asmann YW, Anderson JM. et al. Unique Cellular and Mitochondrial Defects Mediate FK506-Induced Islet β-Cell Dysfunction. Transplantation. 2011;91(6):615–623. doi:10.1097/TP.0b013e3182094a33.
  • Rodriguez-Rodriguez AE, Donate-Correa J, Rovira J, Cuesto G, Luis-Ravelo D, Fernandes MX, Acevedo-Arozena A, Diekmann F, Acebes A, Torres A. et al. Inhibition of the mTOR pathway: a new mechanism of β cell toxicity induced by tacrolimus. Am J Transplant. 2019;19(12):3240–3249. doi:10.1111/ajt.15483.
  • Trinanes J, ten Dijke P, Groen N, Hanegraaf M, Porrini E, Rodriguez-Rodriguez AE, Drachenberg C, Rabelink TJ, de Koning E, Carlotti F. et al. Tacrolimus-induced BMP/SMAD signaling associates with metabolic stress–activated FOXO1 to trigger β-cell failure. Diabetes. 2020;69(2):193–204. doi:10.2337/db19-0828.
  • Ling Q, Huang H, Han Y, Zhang C, Zhang X, Chen K, Wu L, Tang R, Zheng Z, Zheng S. et al. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: from bench to bedside. Am J Transplant. 2020;20(3):701–13. doi:10.1111/ajt.15665.
  • Prytula A, van Gelder T. Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatr Nephrol. 2019;34(1):31–43. doi:10.1007/s00467-018-3892-8.
  • Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet. 2007;22(5):328–35. doi:10.2133/dmpk.22.328.
  • Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32. doi:10.1016/j.biocel.2013.02.019.
  • Laverdiere I, Caron P, Harvey M, Levesque E, Guillemette C. In Vitro Investigation of Human UDP-Glucuronosyltransferase Isoforms Responsible for Tacrolimus Glucuronidation: Predominant Contribution of UGT1A4. Drug Metab Dispos. 2011;39(7):1127–1130. doi:10.1124/dmd.111.039040.
  • Tron C, Rayar M, Petitcollin A, Beaurepaire J-M, Cusumano C, Verdier M-C, Houssel-Debry P, Camus C, Boudjema K, Bellissant E. et al. A high performance liquid chromatography tandem mass spectrometry for the quantification of tacrolimus in human bile in liver transplant recipients. J Chromatogr A. 2016;1475:55–63. doi:10.1016/j.chroma.2016.10.075.
  • Xie D, Guo J, Dang R, Li Y, Si Q, Han W, Wang S, Wei N, Meng J, Wu L. et al. The effect of tacrolimus-induced toxicity on metabolic profiling in target tissues of mice. BMC Pharmacol Toxicol. 2022;23(1):23. doi:10.1186/s40360-022-00626-x.
  • Rangel EB. Tacrolimus in pancreas transplant: a focus on toxicity, diabetogenic effect and drug-drug interactions. Expert Opin Drug Metab Toxicol. 2014;10:1585–1605. doi:10.1517/17425255.2014.964205.
  • Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: Metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40(1):581–616. doi:10.1146/annurev.pharmtox.40.1.581.
  • Pellock SJ, Redinbo MR. Glucuronides in the gut: Sugar-driven symbioses between microbe and host. J Biol Chem. 2017;292(21):8569–76. doi:10.1074/jbc.R116.767434.
  • Hagenfeldt L, Wahlberg F. Serum β-glucuronidase, glucose tolerance, and atherosclerotic disease. Lancet. 1965;285(7389):788–789. doi:10.1016/S0140-6736(65)92959-4.
  • Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of berberis vulgaris and its active constituent, berberine. Phytother Res. 2008;22(8):999–1012. doi:10.1002/ptr.2399.
  • Liu L, Deng YX, Yu S, Lu SS, Xie L, Liu XD. Berberine attenuates intestinal disaccharidases in streptozotocin-induced diabetic rats. Pharmazie. 2008;63:384–388.
  • Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh L-A, Mani S. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Sci. 2010;330(6005):831–5. doi:10.1126/science.1191175.
  • Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR. et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci USA. 2020;117(13):7374–7381. doi:10.1073/pnas.1918095117.
  • Taylor MR, Flannigan KL, Rahim H, Mohamud A, Lewis IA, Hirota SA, Greenway SC. Vancomycin relieves mycophenolate mofetil–induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity. Sci Adv. 2019;5(8):5. doi:10.1126/sciadv.aax2358.
  • Howard EJ, Lam TKT, Duca FA. The Gut Microbiome: Connecting Diet, Glucose Homeostasis, and Disease. Annu Rev Med. 2022;73(1):469–81. doi:10.1146/annurev-med-042220-012821.
  • Lee J-Y, Tsolis RM, Baumler AJ. GUT PHYSIOLOGY the microbiome and gut homeostasis. Sci. 2022;377(6601):44±. doi:10.1126/science.abp9960.
  • Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73. doi:10.1038/s41574-019-0156-z.
  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72. doi:10.2337/db06-1491.
  • Palmnas-Bedard MSA, Costabile G, Vetrani C, Aberg S, Hjalmarsson Y, Dicksved J, Riccardi G, Landberg R. The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr. 2022;116(4):862–874. doi:10.1093/ajcn/nqac217.
  • Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J, Yin Y, Yin J, Chen L, Zhang H. et al. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome. 2021;9(1). doi:10.1186/s40168-021-01093-y.
  • Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–45. doi:10.1038/s41580-019-0190-7.
  • Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling — mechanisms and research needs. Nat Rev Endocrinol. 2019;15(12):701–712. doi:10.1038/s41574-019-0266-7.
  • Jiao W, Zhang Z, Xu Y, Gong L, Zhang W, Tang H, Zeng S, Zhang Q, Sun Z, Liu L. et al. Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota. Am J Transplant. 2020;20(9):2413–24. doi:10.1111/ajt.15880.
  • Le J, Zhang X, Jia W, Zhang Y, Luo J, Sun Y, Ye J. Regulation of microbiota–GLP1 axis by sennoside A in diet-induced obese mice. Acta Pharm Sin B. 2019;9(4):758–768. doi:10.1016/j.apsb.2019.01.014.
  • Mooli RGR, Mukhi D, Pasupulati AK, Evers SS, Sipula IJ, Jurczak M, Seeley RJ, Shah YM, Ramakrishnan SK. Intestinal HIF-2α Regulates GLP-1 Secretion via Lipid Sensing in L-Cells. Cell Mol Gastroenterol Hepatol. 2022;13(4):1057–1072. doi:10.1016/j.jcmgh.2021.12.004.
  • Schmidt J, Rattner DW, Lewandrowski K, Compton CC, Mandavilli U, Knoefel WT, WARSHAW AL. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215(1):44–56. doi:10.1097/00000658-199201000-00007.
  • Chen M, Cheng K-W, Chen Y-J, Wang C-H, Cheng T-C, Chang K-C, Kao A-P, Chuang K-H. Real-time imaging of intestinal bacterial β-glucuronidase activity by hydrolysis of a fluorescent probe. Sci Rep. 2017;7(1):3142. doi:10.1038/s41598-017-03252-4.
  • Cheng K-W, Tseng C-H, Chen IJ, Huang B-C, Liu H-J, Ho K-W, Lin W-W, Chuang C-H, Huang M-Y, Leu Y-L. et al. Inhibition of gut microbial β-glucuronidase effectively prevents carcinogen-induced microbial dysbiosis and intestinal tumorigenesis. Pharmacol Res. 2022;177:177. doi:10.1016/j.phrs.2022.106115.
  • Jin Y-Y, Shi Z-Q, Chang W-Q, Guo L-X, Zhou J-L, Liu J-Q, Liu L-F, Xin G-Z. A chemical derivatization based UHPLC-LTQ-Orbitrap mass spectrometry method for accurate quantification of short-chain fatty acids in bronchoalveolar lavage fluid of asthma mice. J Pharmaceut Biomed. 2018;161:336–343. doi:10.1016/j.jpba.2018.08.057.
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85. doi:10.1016/0003-2697(85)90442-7.
  • Zheng CL, Wang C, Zhang T, Li D, Ni XF, Lin JH, Sun L, Chen B. Exploring the Mechanism of Skeletal Muscle in a tacrolimus-induced posttransplantation diabetes mellitus Model on gene expression profiles. J Diabetes Res. 2020;2020:1–11. doi:10.1155/2020/6542346.
  • Zhang L, He Y, Wu C, Wu M, Chen X, Luo J, Cai Y, Xia P, Chen B. Altered expression of glucose metabolism associated genes in a tacrolimus‑induced post‑transplantation diabetes mellitus in rat model. Int J Mol Med. 2019;44:1495–1504. doi:10.3892/ijmm.2019.4313.
  • Pollet RM, D’Agostino EH, Walton WG, Xu Y, Little MS, Biernat KA, Pellock SJ, Patterson LM, Creekmore BC, Isenberg HN. et al. An atlas of β-glucuronidases in the human intestinal microbiome. Structure. 2017;25(7):967–977.e5. doi:10.1016/j.str.2017.05.003.
  • Yip LY, Aw CC, Lee SH, Hong YS, Ku HC, Xu WH, Chan JMX, Cheong EJY, Chng KR, Ng AHQ. et al. The liver–gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology. 2018;67(1):282–295. doi:10.1002/hep.29327.
  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. doi:10.2337/db07-1403.
  • Dongxu CUI, Shaolong SUN, Xiaobo Z, Shuodong WU, Xianwei DAI. Experimental research of blood cell releasing beta-glucuronidase regulated by endotoxin. China J Modern Med. 2008;18:283–285.
  • Criswell DS, Henry KM, DiMarco NM, Grossie VB. Chronic exercise and the pro-inflammatory response to endotoxin in the serum and heart. Immunol Lett. 2004;95(2):213–20. doi:10.1016/j.imlet.2004.07.012.
  • 민계식. Effects of cholic Acid/CDCA and FGF-19 on the protein levels of the endogenous small heterodimer partner (SHP) in the mouse liver and HepG2 cells. Journal Of Life Science. 2009;19(12):1731–1736. doi:10.5352/JLS.2009.19.12.1731.
  • Kong B, Wang L, Chiang JYL, Zhang YC, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology. 2012;56(3):1034–43. doi:10.1002/hep.25740.
  • Jenssen T, Hartmann A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol. 2019;15(3):172–88. doi:10.1038/s41574-018-0137-7.
  • Jenssen T, Hartmann A. Emerging treatments for post-transplantation diabetes mellitus. Nat Rev Nephrol. 2015;11(8):465–77. doi:10.1038/nrneph.2015.59.
  • Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, van Nood E, Holleman F, Knaapen M, Romijn JA. et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60(4):824–31. doi:10.1016/j.jhep.2013.11.034.
  • Basolo A, Hohenadel M, Ang QY, Piaggi P, Heinitz S, Walter M, Walter P, Parrington S, Trinidad DD, von Schwartzenberg RJ. et al. Effects of underfeeding and oral vancomycin on gut microbiome and nutrient absorption in humans. Nat Med. 2020;26(4):589–598. doi:10.1038/s41591-020-0801-z.
  • Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun. 2018;9(1):2872. doi:10.1038/s41467-018-05336-9.
  • Zacarias MF, Carmen Collado M, Gomez-Gallego C, Flinck H, Aittoniemi J, Isolauri E, Salminen S. Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PloS ONE. 2018;13(7):13. doi:10.1371/journal.pone.0200305.
  • Han Y, Jiang X, Ling Q, Wu L, Wu P, Tang R, Xu X, Yang M, Zhang L, Zhu W. et al. Antibiotics-mediated intestinal microbiome perturbation aggravates tacrolimus-induced glucose disorders in mice. Front Med. 2019;13(4):471–81. doi:10.1007/s11684-019-0686-8.
  • Roshanravan N, Alamdari NM, Jafarabadi MA, Mohammadi A, Shabestari BR, Nasirzadeh N, Asghari S, Mansoori B, Akbarzadeh M, Ghavami A. et al. Effects of oral butyrate and inulin supplementation on inflammation-induced pyroptosis pathway in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Cytokine. 2020;131:131. doi:10.1016/j.cyto.2020.155101.
  • Li J, Dawson PA. Animal models to study bile acid metabolism. Bba-mol Basis Dis. 2019;1865(5):895–911. doi:10.1016/j.bbadis.2018.05.011.
  • Mizuta K, Kobayashi E, Uchida H, Hishikawa S, Kawarasaki H. Increase of bile acid production by tacrolimus in the rat liver. Transplant Proc. 2003;35(1):437–438. doi:10.1016/S0041-1345(02)03794-6.
  • Muto Y, Suzuki M, Kakiyama G, Sasaki T, Murai T, Takei H, Nittono H. Profiling of urinary glucuronidated bile acids across age groups. Metabolites. 2022;12(12):12. doi:10.3390/metabo12121230.
  • Radominska-Pandya A, Little JM, Pandya JT, Tephly TR, King CD, Barone GW, Raufman J-P. UDP-glucuronosyltransferases in human intestinal mucosa. Biochimica Et Biophysica Acta-Lipids And Lipid Metab. 1998;1394(2–3):199–208. doi:10.1016/S0005-2760(98)00115-5.
  • Gribble FM, Reimann F. Metabolic Messengers: glucagon-like peptide 1. Nat Metab. 2021;3(2):142–148. doi:10.1038/s42255-020-00327-x.
  • Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, disease, and aging. Physiol Rev. 2021;101(2):683–731. doi:10.1152/physrev.00049.2019.
  • Trabelsi M-S, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI, Perino A, Brighton CA, Sebti Y, Kluza J. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6(1):6. doi:10.1038/ncomms8629.
  • Zhang S-Y, Li RJW, Lim Y-M, Batchuluun B, Liu H, Waise TMZ, Lam TKT. FXR in the dorsal vagal complex is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats. Gut. 2021;70(9):1675–1683. doi:10.1136/gutjnl-2020-321757.