1,427
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Probiotic Lactobacillus spp. improves Drosophila memory by increasing lactate dehydrogenase levels in the brain mushroom body neurons

, , , , , , , & ORCID Icon show all
Article: 2316533 | Received 21 Sep 2023, Accepted 05 Feb 2024, Published online: 19 Feb 2024

References

  • De Palma G, Lynch MDJ, Lu J, Dang VT, Deng YK, Jury J, Umeh, G., Miranda, P M., Pigrau Pastor, M., Sidani, S. et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9(379). doi:10.1126/scitranslmed.aaf6397.
  • Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli, J., Chow, J., Reisman, S., Petrosino, J. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–19. doi:10.1016/j.cell.2013.11.024.
  • Cheng L, Wu H, Chen Z, Hao H, Zheng X. Gut microbiome at the crossroad of genetic variants and behavior disorders. Gut Microbes. 2023;15(1):2201156. doi:10.1080/19490976.2023.2201156.
  • Ecklu-Mensah G, Gilbert J, Devkota S. Dietary selection pressures and their impact on the gut microbiome. Cell Mol Gastroenterol Hepatol. 2022;13(1):7–18. doi:10.1016/j.jcmgh.2021.07.009.
  • Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74. doi:10.1038/nature18847.
  • Lyte M. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes. 2014;5(3):381–389. doi:10.4161/gmic.28682.
  • Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–33. doi:10.1016/j.brainres.2018.03.015.
  • Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20(2):145–155. doi:10.1038/nn.4476.
  • Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Mi. 2012;2. doi:10.3389/fcimb.2012.00086.
  • Salminen SJ, Gueimonde M, Isolauri E. Probiotics that modify disease risk. J Nutr. 2005;135(5):1294–1298. doi:10.1093/jn/135.5.1294.
  • Begum N, Harzandi A, Lee S, Uhlen M, Moyes DL, Shoaie S. Host-mycobiome metabolic interactions in health and disease. Gut Microbes. 2022;14(1):2121576. doi:10.1080/19490976.2022.2121576.
  • Deng Y, Zhou M, Wang J, Yao J, Yu J, Liu W, Wu, L., Wang, J., Gao, R. Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes. 2021;13(1):1–16. doi:10.1080/19490976.2020.1869501.
  • Tillisch K. The effects of gut microbiota on CNS function in humans. Gut Microbes. 2014;5(3):404–410. doi:10.4161/gmic.29232.
  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A., Malik, H S. Bacterial communities of diverse drosophila species: ecological context of a host–microbe model system. PloS Genet. 2011;7(9):e1002272. doi:10.1371/journal.pgen.1002272.
  • Broderick NA, Lemaitre B. Gut-associated microbes of drosophila melanogaster. Gut Microbes. 2012;3(4):307–321. doi:10.4161/gmic.19896.
  • Erkosar B, Storelli G, Defaye A, Leulier F. Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe. 2013;13(1):8–14. doi:10.1016/j.chom.2012.12.004.
  • Lemaitre B, Hoffmann J. The host defense of drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743. doi:10.1146/annurev.immunol.25.022106.141615.
  • Chiang MH, Ho SM, Wu HY, Lin YC, Tsai WH, Wu T, Lai, C-H., Wu, C-L. Drosophila model for studying gut microbiota in behaviors and neurodegenerative diseases. Biomedicines. 2022;10(3):596. doi:10.3390/biomedicines10030596.
  • Tully T, Quinn WG. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A. 1985;157:263–277. doi:10.1007/BF01350033.
  • Connolly JB, Roberts IJ, Armstrong JD, Kaiser K, Forte M, Tully T, O’Kane, C J. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science. 1996;274(5295):2104–2107. doi:10.1126/science.274.5295.2104.
  • Wu CL, Xia S, Fu TF, Wang H, Chen YH, Leong D, Chiang, A-S., Tully, T. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci. 2007;10(12):1578–1586. doi:10.1038/nn2005.
  • Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S. Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron. 2007;53(1):103–115. doi:10.1016/j.neuron.2006.11.021.
  • Davis RL. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci. 2005;28(1):275–302. doi:10.1146/annurev.neuro.28.061604.135651.
  • Wu CL, Chiang AS. Genes and circuits for olfactory-associated long-term memory in Drosophila. J Neurogenet. 2008;22(3):257–284. doi:10.1080/01677060802307755.
  • Zars T, Fischer M, Schulz R, Heisenberg M. Localization of a short-term memory in Drosophila. Science. 2000;288(5466):672–675. doi:10.1126/science.288.5466.672.
  • Pascual A, Prat T. Localization of long-term memory within the Drosophila mushroom body. Science. 2001;294(5544):1115–1117. doi:10.1126/science.1064200.
  • Aso Y, Grübel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet. 2009;23(1–2):156–172. doi:10.1080/01677060802471718.
  • Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, Dionne, H., Abbott, L.F, Axel, R., Tanimoto, H. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife. 2014;3:e04577. doi:10.7554/eLife.04577.
  • Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci. 2003;4(4):266–275. doi:10.1038/nrn1074.
  • Adeva M, González-Lucán M, Seco M, Donapetry C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion. 2013;13(6):615–629. doi:10.1016/j.mito.2013.08.011.
  • Berridge BR, Van Vleet JF, Herman E. Chapter 46 - Cardiac, Vascular, and Skeletal Muscle Systems. In: Haschek WM, Rousseaux CG, Wallig MA. eds. Haschek and rousseaux’s handbook of toxicologic pathology. 3rd ed. Boston: Academic Press; 2013. p. 1567–1665. doi:10.1016/B978-0-12-415759-0.00046-7
  • Mattila J, Hietakangas V. Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics. 2017;207(4):1231–53 . doi:10.1534/genetics.117.199885.
  • Veech RL. Tricarboxylic Acid Cycle. In: Lennarz WJ, Lane MD. eds. Encyclopedia of biological chemistry. 2nd ed. Waltham: Academic Press; 2013. p. 436–440. doi:10.1016/B978-0-12-378630-2.00608-3
  • Bender DA. GLUCOSE | function and metabolism. In: Caballero B. ed. Encyclopedia of food sciences and nutrition. 2nd ed. Oxford: Academic Press; 2003. p. 2904–2911. doi:10.1016/B0-12-227055-X/00558-7
  • Abu-Shumays RL, Fristrom JW. IMP-L3, A 20-hydroxyecdysone-responsive gene encodes Drosophila lactate dehydrogenase: structural characterization and developmental studies. Dev Genet. 1997;20:11–22. doi:10.1002/(sici)1520-6408(1997)20:1<11:Aid-dvg2>3.0.Co;2-c.
  • Charlton-Perkins MA, Sendler ED, Buschbeck EK, Cook TA., Ready, D. Multifunctional glial support by semper cells in the Drosophila retina. PloS Genet. 2017;13(5):e1006782. doi:10.1371/journal.pgen.1006782.
  • Frame AK, Robinson JW, Mahmoudzadeh NH, Tennessen JM, Simon AF, Cumming RC. Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY). 2023;15:947–81. doi:10.18632/aging.204565.
  • Madhulika R, Sarah MC, Shefali AS, Geetanjali C, Jason MT. Characterization of genetic and molecular tools for studying the endogenous expression of lactate dehydrogenase in Drosophila melanogaster. bioRxiv. 2023: 2023.06.15.545165. doi:10.1101/2023.06.15.545165.
  • Li H, Rai M, Buddika K, Sterrett MC, Luhur A, Mahmoudzadeh NH, Julick, C R., Pletcher, R C., Chawla, G., Gosney, C J. et al. Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during Drosophila melanogaster larval development. Development. 2019;146. doi:10.1242/dev.175315.
  • Rechsteiner MC. Drosophila lactate dehydrogenase and α-glycerolphosphate dehydrogenase: distribution and change in activity during development. J Insect Physiol. 1970;16(6):1179–1192. doi:10.1016/0022-1910(70)90208-8.
  • Hunt LC, Demontis F., Le Couteur, D G. Age-related increase in lactate dehydrogenase activity in skeletal muscle reduces life span in Drosophila. J Gerontol: Series A. 2021;77(2):259–267. doi:10.1093/gerona/glab260.
  • Gillette CM, Tennessen JM, Reis T. Balancing energy expenditure and storage with growth and biosynthesis during drosophila development. Dev Biol. 2021;475:234–44. doi:10.1016/j.ydbio.2021.01.019.
  • Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209. PMC4367209.
  • Mayer EA, Savidge T, Shulman RJ. Brain–gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014;146(6):1500–1512. doi:10.1053/j.gastro.2014.02.037.
  • Kim CS, Cha L, Sim M, Jung S, Chun WY, Baik HW, Shin, D-M. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci. 2021;76(1):32–40. doi:10.1093/gerona/glaa090.
  • Sanborn V, Azcarate-Peril MA, Updegraff J, Manderino L, Gunstad J. Randomized clinical trial examining the impact of Lactobacillus rhamnosus GG probiotic supplementation on cognitive functioning in middle-aged and older adults. Neuropsychiatr Dis Treat. 2020;16:2765–77. doi:10.2147/ndt.S270035.
  • Eastwood J, Walton G, Van Hemert S, Williams C, Lamport D. The effect of probiotics on cognitive function across the human lifespan: a systematic review. Neurosci Biobehav Rev. 2021;128:311–27. doi:10.1016/j.neubiorev.2021.06.032.
  • Park MR, Shin M, Mun D, Jeong S-Y, Jeong D-Y, Song M, Ko, G., Unno, T., Kim, Y., Oh, S. et al. Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Sci Rep. 2020;10(1):21701. doi:10.1038/s41598-020-77587-w.
  • Capo F, Wilson A, Di Cara F. The intestine of drosophila melanogaster: an emerging versatile model system to study intestinal epithelial homeostasis and host-microbial interactions in humans. Microorganisms. 2019;7(9):336. doi:10.3390/microorganisms7090336.
  • Yin Y, Chen N, Zhang S, Guo A. Choice strategies in Drosophila are based on competition between olfactory memories. Eur J Neurosci. 2009;30(2):279–288. doi:10.1111/j.1460-9568.2009.06821.x.
  • Villar ME, Pavão-Delgado M, Amigo M, Jacob PF, Merabet N, Pinot A, Perry, S A., Waddell, S., Perisse, E. Differential coding of absolute and relative aversive value in the drosophila brain. Curr Biol. 2022;32(21):4576–92.e5. doi:10.1016/j.cub.2022.08.058.
  • Berry J, Krause WC, Davis RL. Olfactory memory traces in Drosophila. Prog Brain Res. 2008;169:293–304. doi:10.1016/s0079-6123(07)00018-0.
  • Davis RL. Traces of drosophila memory. Neuron. 2011;70(1):8–19. doi:10.1016/j.neuron.2011.03.012.
  • David-Benjamin GA, Dinghui Y, Ronald LD. A late-phase, long-term memory trace forms in the γ neurons of Drosophila mushroom bodies after olfactory classical conditioning. J Neurosci. 2010;30(49):16699. doi:10.1523/JNEUROSCI.1882-10.2010.
  • Yu D, Akalal DB, Davis RL. Drosophila α/β mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron. 2006;52(5):845–855. doi:10.1016/j.neuron.2006.10.030.
  • Lee W-P, Chiang M-H, Chang L-Y, Lee J-Y, Tsai Y-L, Chiu T-H, Chiang, H-C., Fu, T-F., Wu, T., Wu, C-L. et al. Mushroom body subsets encode CREB2-dependent water-reward long-term memory in Drosophila. PloS Genet. 2020;16(8):e1008963. doi:10.1371/journal.pgen.1008963.
  • Wang Y MA, Chiang AS, Zhong Y., Zhong, Yi. Imaging of an early memory trace in the drosophila mushroom body. J Neurosci. 2008;28(17):4368. doi:10.1523/JNEUROSCI.2958-07.2008.
  • Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, Giebultowicz, J M. Lactate dehydrogenase expression modulates longevity and neurodegeneration in drosophila melanogaster. Aging (Albany NY). 2020;12(11):10041–10058. doi:10.18632/aging.103373.
  • Paul MB, Zuzana Z. The pyruvate dehydrogenase complex in cancer: implications for the transformed state and cancer chemotherapy. In Rosa Angela C. ed. Dehydrogenases. Rijeka: IntechOpen; 2012. p. Ch. 3. doi:10.5772/48582.
  • Barnstedt O, Owald D, Felsenberg J, Brain R, Moszynski JP, Talbot CB, Perrat, P N., Waddell, S. Memory-relevant mushroom body output synapses are cholinergic. Neuron. 2016;89(6):1237–1247. doi:10.1016/j.neuron.2016.02.015.
  • Szutowicz A, Jankowska A, Blusztajn JK, Tomaszewicz M. Acetylcholine and acetyl-CoA metabolism in differentiating SN56 septal cell line. J Neurosci Res. 1999;57:131–136. doi:10.1002/(SICI)1097-4547(19990701)57:1<131:AID-JNR14>3.0.CO;2-M.
  • Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin, Li, Chen, X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation. 2020;17(1):25. doi:10.1186/s12974-020-1705-z.
  • Silva V, Palacios-Muñoz A, Okray Z, Adair KL, Waddell S, Douglas AE, Ewer, J. The impact of the gut microbiome on memory and sleep in Drosophila. J Exp Biol. 2021;224. doi:10.1242/jeb.233619.
  • Ko T, Murakami H, Kobayashi S, Kamikouchi A, Ishimoto H. Behavioral screening of sleep-promoting effects of human intestinal and food-associated bacteria on drosophila melanogaster. Genes Cells. 2023;28(6):433–446. doi:10.1111/gtc.13025.
  • Ko T, Murakami H, Kamikouchi A, Ishimoto H. Biogenic action of lactobacillus plantarum SBT2227 promotes sleep in drosophila melanogaster. iScience. 2022;25(7):104626. doi:10.1016/j.isci.2022.104626.
  • McFarland LV. Efficacy of single-strain probiotics versus multi-strain mixtures: systematic review of strain and disease specificity. Dig Dis Sci. 2021;66(3):694–704. doi:10.1007/s10620-020-06244-z.
  • Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-strain probiotics: synergy among isolates enhances biological activities. Biology (Basel). 2021;10(4):322. doi:10.3390/biology10040322.
  • Lin T-C, Hsu I-L, Tsai W-H, Chu Y-C, Kuan L-C, Huang M-S, Yeh, W-L., Chen, Y-H., Hsu, S-J., Chang, W-W. et al. Improvement of bacterial vaginosis by oral lactobacillus supplement: a randomized, double-blinded trial. Appl Sci. 2021;11(3):902. doi:10.3390/app11030902.
  • Tsai W-H, Yeh W-L, Chou C-H, Wu C-L, Lai C-H, Yeh Y-T, Liao, C-A., Wu, C-C. Suppressive effects of Lactobacillus on depression through regulating the gut microbiota and metabolites in C57BL/6J mice induced by ampicillin. Biomedicines. 2023;11(4):1068. doi:10.3390/biomedicines11041068.
  • Chen Y-H, Tsai W-H, Wu H-Y, Chen C-Y, Yeh W-L, Chen Y-H, Hsu, H-Y., Chen, W-W., Chen, Y-W., Chang, W-W. et al. Probiotic Lactobacillus spp. Act Against Helicobacter pylori-induced Inflammation. J Clin Med. 2019;8(1):90. doi:10.3390/jcm8010090.
  • Blum AL, Li W, Cressy M, Dubnau J. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol. 2009;19(16):1341–1350. doi:10.1016/j.cub.2009.07.016.