1,377
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

S-amlodipine induces liver inflammation and dysfunction through the alteration of intestinal microbiome in a rat model

, , , , , , , & show all
Article: 2316923 | Received 25 Jun 2023, Accepted 06 Feb 2024, Published online: 24 Feb 2024

References

  • Joe B, McCarthy CG, Edwards JM, Cheng X, Chakraborty S, Yang T, Golonka RM, Mell B, Yeo JY, Bearss NR, et al. Microbiota introduced to germ-free rats restores vascular contractility and blood pressure. Hypertension. 2020;76(6):1847–22. doi:10.1161/HYPERTENSIONAHA.120.15939.
  • Zhou B, Carrillo-Larco RM, Danaei G, Riley LM, Paciorek CJ, Stevens GA, Gregg EW, Bennett JE, Solomon B, Singleton RK, et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet. 2021;398(10304):957–980. doi:10.1016/s0140-6736(21)01330-1.
  • DeWitt CR, Waksman JC. Pharmacology, pathophysiology and management of calcium channel blocker and β-blocker toxicity. Toxicol Rev. 2004;23(4):223–238. doi:10.2165/00139709-200423040-00003.
  • Elliott WJ, Ram CVS. Calcium Channel Blockers. J Clin Hypertens. 2011;13(9):687–689. doi:10.1111/j.1751-7176.2011.00513.x.
  • Eisenberg MJ, Brox A, Bestawros AN. Calcium channel blockers: an update. Am J Med. 2004;116(1):35–43. doi:10.1016/j.amjmed.2003.08.027.
  • Simpson W, Khan S. Amlodipine induced cholestasis: a case report. Gut Gastroenterol. 2020;3:001–003.
  • Varghese G, Madi L, Ghannam M, Saad R. A possible increase in liver enzymes due to amlodipine: A case report. SAGE Open Med Case Rep. 2020;8:2050313X20917822. doi:10.1177/2050313X20917822.
  • Laurent S. Antihypertensive drugs. Pharmacol Res. 2017;124:116–125. doi:10.1016/j.phrs.2017.07.026.
  • Yang J, Si D, Zhao Y, He C, Yang P. S-amlodipine improves endothelial dysfunction via the RANK/RANKL/OPG system by regulating microRNA-155 in hypertension. Biomed Pharmacother. 2019;114:108799. doi:10.1016/j.biopha.2019.108799.
  • Sen S, Demir M, Yigit Z, Uresin AY. Efficacy and safety of S-Amlodipine 2.5 and 5 mg/d in hypertensive patients who were treatment-naive or Previously received antihypertensive monotherapy. J Cardiovasc Pharmacol Ther. 2018;23(4):318–328. doi:10.1177/1074248418769054.
  • Li X, Wang C, Li T, Liu Y, Liu S, Tao Y, Ma Y, Gao X, Cao Y. Bioequivalence of levamlodipine besylate tablets in healthy Chinese subjects: a single-dose and two-period crossover randomized study. BMC Pharmacol Toxicol. 2020;21(1):80. doi:10.1186/s40360-020-00459-6.
  • Gupta U, Kelwade J, Sreejith M, Thomas J, Vidyasindhu S. Cost efficacy of S-amlodipine vs racemic amlodipine in hypertension management. Health Econ Outcome Res: Open Access. 2021;7(7):177.
  • Song SC, An YM, Shin JH, Chung MJ, Seo JG, Kim E. Beneficial effects of a probiotic blend on gastrointestinal side effects induced by leflunomide and amlodipine in a rat model. Benef Microbes. 2017;8(5):801–808. doi:10.3920/BM2016.0231.
  • Khan MT, Nieuwdorp M, Bäckhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014;20(5):753–760. doi:10.1016/j.cmet.2014.07.006.
  • Hoyles L, Fernández-Real J-M, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24(7):1070–1080. doi:10.1038/s41591-018-0061-3.
  • Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastro Hepat. 2016;13(7):412–425. doi:10.1038/nrgastro.2016.85.
  • Alhajri N, Khursheed R, Ali MT, Abu Izneid T, Al-Kabbani O, Al-Haidar MB, Al-Hemeiri F, Alhashmi M, Pottoo FH. Cardiovascular Health and The Intestinal Microbial Ecosystem: The Impact of Cardiovascular Therapies on The Gut Microbiota. Microorganisms. 2021;9(10):2013. doi:10.3390/microorganisms9102013.
  • Aho VTE, Pereira PAB, Voutilainen S, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine. 2019;44:691–707. doi:10.1016/j.ebiom.2019.05.064.
  • Kang MJ, Kim HG, Kim JS, Oh DG, Um YJ, Seo CS, Han JW, Cho HJ, Kim GH, Jeong TC. The effect of gut microbiota on drug metabolism. Expert Opin Drug Metab Toxicol Appl Pharmacol. 2013;9(10):1295–1308. doi:10.1517/17425255.2013.807798.
  • Choi MS, Yu JS, Yoo HH, Kim D-H. The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol Res. 2018;130:164–171. doi:10.1016/j.phrs.2018.01.019.
  • Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B. 2021;11(7):1789–1812. doi:10.1016/j.apsb.2020.09.013.
  • Antoniades CG, Berry PA, Wendon JA, Vergani D. The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol. 2008;49(5):845–861. doi:10.1016/j.jhep.2008.08.009.
  • Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol. 2010;16(11):1321–1329. doi:10.3748/wjg.v16.i11.1321.
  • Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, et al. Gut commensal bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol. 2017;10(1):104–116. doi:10.1038/mi.2016.42.
  • Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–868. doi:10.1038/nm.4358.
  • Guo W, Cui S, Tang X, Yan Y, Xiong F, Zhang Q, Zhao J, Mao B, Zhang H. Intestinal microbiomics and hepatic metabolomics insights into the potential mechanisms of probiotic bifidobacterium pseudolongum CCFM1253 prevents the acute liver injury in mice. J Sci Food Agric. 2023;103(12):5958–5969. doi:10.1002/jsfa.12665.
  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, et al. Cross-talk between akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–9071. doi:10.1073/pnas.1219451110.
  • Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. doi:10.3389/fimmu.2020.00906.
  • Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–140. doi:10.1038/nrmicro818.
  • Belanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol. 2011;62(1):1–10. doi:10.1111/j.1574-695X.2011.00797.x.
  • Fart F, Rajan SK, Wall R, Rangel I, Ganda-Mall JP, Tingo L, Brummer RJ, Repsilber D, Schoultz I, Lindqvist CM. Differences in gut microbiome composition between senior orienteering athletes and community-dwelling older adults. Nutrients. 2020;12(9). doi:10.3390/nu12092610.
  • Smet A, Menard A. Review: Other Helicobacter species. Helicobacter. 2020;25(1):e12744. doi:10.1111/hel.12744.
  • Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastro Hepat. 2017;14(10):573–584. doi:10.1038/nrgastro.2017.88.
  • Chen YJ, Wu H, Wu SD, Lu N, Wang YT, Liu HN, Dong L, Liu TT, Shen XZ. Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation. J Gastroenterol Hepatol. 2018;33(11):1844–1852. doi:10.1111/jgh.14281.
  • Kittana H, Gomes-Neto JC, Heck K, Geis AL, Segura Munoz RR, Cody LA, Schmaltz RJ, Bindels LB, Sinha R, Hostetter JM, et al. Commensal Escherichia coli strains can promote intestinal inflammation via differential interleukin-6 production. Front Immunol. 2018;9:2318. doi:10.3389/fimmu.2018.02318.
  • Steiner T, Lima A, Nataro J, Guerrant R. Enteroaggregative Escherichia coli produce intestinal inflammation and growth impairment and cause interleukin-8 release from intestinal epithelial cells. J Infect Dis. 1998;177(1):88–96. doi:10.1086/513809.
  • Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3-20; quiz 21–22. doi:10.1016/j.jaci.2009.05.038.
  • Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–1103. doi:10.1136/gut.2008.165886.
  • Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142(5):1100–1101.e1102. doi:10.1053/j.gastro.2012.01.034.
  • Johnson AM, Costanzo A, Gareau MG, Armando AM, Quehenberger O, Jameson JM, Olefsky JM, Nerurkar PV. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PloS One. 2015;10(4):e0122195. doi:10.1371/journal.pone.0122195.
  • Chi L, Tu P, Ru H, Lu K. Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes. 2021;13(1):1921912. doi:10.1080/19490976.2021.1921912.
  • Yang J, Wei H, Zhou Y, Szeto CH, Li C, Lin Y, Coker OO, Lau HCH, Chan AWH, Sung JJY, et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology. 2022;162(1):135–149.e132. doi:10.1053/j.gastro.2021.08.041.
  • Zhao R, Coker OO, Wu J, Zhou Y, Zhao L, Nakatsu G, Bian X, Wei H, Chan AWH, Sung JJY, et al. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology. 2020;159(3):969–983.e964. doi:10.1053/j.gastro.2020.05.004.
  • Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15(7):397–411. doi:10.1038/s41575-018-0011-z.
  • Zoratti C, Moretti R, Rebuzzi L, Albergati IV, Di Somma A, Decorti G, Di BS, LS C, Giuffre M. Antibiotics and liver cirrhosis: what the physicians need to know. Antibiot (Basel). 2021;11(1):31. doi:10.3390/antibiotics11010031.
  • Westphal J, Vetter D, Brogard J. Hepatic side-effects of antibiotics. J Antimicrob Chemother. 1994;33(3):387–401. doi:10.1093/jac/33.3.387.
  • Lin TL, Shu CC, Chen YM, Lu JJ, Wu TS, Lai WF, Tzeng CM, Lai HC, CC L. Like cures like: pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome. Front Pharmacol. 2020;11:554. doi:10.3389/fphar.2020.00554.
  • Lai HC, Lin TL, Chen TW, Kuo YL, Chang CJ, Wu TR, Shu CC, Tsai YH, Swift S, Lu CC. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut. 2022;71(2):309–321. doi:10.1136/gutjnl-2020-322599.
  • Jang HM, Lee KE, Lee HJ, Kim DH. Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-kappaB activation through gut microbiota disturbance. Sci Rep. 2018;8(1):13897. doi:10.1038/s41598-018-31764-0.
  • Halimulati M, Wang R, Aihemaitijiang S, Huang X, Ye C, Zhang Z, He L, Zhu W, Zhang Z. Anti-hyperuricemia mechanism of anserine based on the gut-kidney axis: integrated analyses of metagenomic and Metabolomic. Preprint. 2022. doi:10.21203/rs.3.rs-2065498/v1.
  • Lee HB, Do MH, Jhun H, Ha SK, Song HS, Roh SW, Chung WH, Nam YD, Park HY. Amelioration of hepatic steatosis in mice through bacteroides uniformis CBA7346-mediated regulation of high-fat diet-induced insulin resistance and Lipogenesis. Nutrients. 2021;13(9):2989. doi:10.3390/nu13092989.
  • Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C, Hernandez BY, Alegado R, Dong B, Li D, et al. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget. 2016;7(15):19355–19366. doi:10.18632/oncotarget.8466.
  • Kang H, You HJ, Lee G, Lee SH, Yoo T, Choi M, Joo SK, Park JH, Chang MS, Lee DH, et al. Interaction effect between NAFLD severity and high carbohydrate diet on gut microbiome alteration and hepatic de novo lipogenesis. Gut Microbes. 2022;14(1):2078612. doi:10.1080/19490976.2022.2078612.
  • Llorente C, Schnabl B. The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol. 2015;1(3):275–284. doi:10.1016/j.jcmgh.2015.04.003.
  • Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, Francis H, Cardinale V, Onori P, Safarikia S, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2020;72(2):470–485. doi:10.1002/hep.31056.
  • Olinga P, Merema MT, De Jager MH, Derks F, Melgert BN, Moshage H, Slooff MJ, Meijer DK, Poelstra K, Groothuis GM. Rat liver slices as a tool to study LPS-induced inflammatory response in the liver. J Hepatol. 2001;35(2):187–194. doi:10.1016/S0168-8278(01)00103-9.
  • Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol. 2005;3(1):36–46. doi:10.1038/nrmicro1068.
  • Lai L, Chen Y, Tian X, Li X, Zhang X, Lei J, Bi Y, Fang B, Song X. Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats. Eur J Pharmacol. 2015;765:234–241. doi:10.1016/j.ejphar.2015.08.040.
  • Ahmed LA, Salem MB, El-Din SH S, El-Lakkany NM, Ahmed HO, Nasr SM, Hammam OA, Botros SS, Saleh S. Gut microbiota modulation as a promising therapy with metformin in rats with non-alcoholic steatohepatitis: role of LPS/TLR4 and autophagy pathways. Eur J Pharmacol. 2020;887:173461. doi:10.1016/j.ejphar.2020.173461.
  • Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–237. doi:10.1038/s41581-019-0244-2.
  • Feng Q, Chen WD, Wang YD. Gut microbiota: an integral moderator in health and disease. Front Microbiol. 2018;9:151. doi:10.3389/fmicb.2018.00151.
  • Nicolas S, Blasco-Baque V, Fournel A, Gilleron J, Klopp P, Waget A, Ceppo F, Marlin A, Padmanabhan R, Iacovoni JS, et al. Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Mol Syst Biol. 2017;13(3):921. doi:10.15252/msb.20167356.
  • Szabo G, Bala S, Petrasek J, Gattu A. Gut-liver axis and sensing microbes. Dig Dis. 2010;28(6):737–744. doi:10.1159/000324281.
  • Orci LA, Lacotte S, Delaune V, Slits F, Oldani G, Lazarevic V, Rossetti C, Rubbia-Brandt L, Morel P, Toso C. Effects of the gut-liver axis on ischaemia-mediated hepatocellular carcinoma recurrence in the mouse liver. J Hepatol. 2018;68(5):978–985. doi:10.1016/j.jhep.2017.12.025.
  • Fei N, Bruneau A, Zhang X, Wang R, Wang J, Rabot S, Gérard P, Zhao L, Ruby EG. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease. MBio. 2020;11(1):e03263–03219. doi:10.1128/mBio.03263-19.
  • Li Y, Zhao D, Qian M, Liu J, Pan C, Zhang X, Duan X, Zhang Y, Jia W, Wang L. Amlodipine, an anti-hypertensive drug, alleviates non-alcoholic fatty liver disease by modulating gut microbiota. Br J Pharmacol. 2021;179(9):2054–2077. doi:10.1111/bph.15768.
  • Hammerstrom AE. Possible amlodipine-induced hepatotoxicity after stem cell transplant. Ann Pharmacother. 2015;49(1):135–139. doi:10.1177/1060028014552820.
  • Yet Kwong Horman J, Patel P, Schultz M, Kraschnewski J. Amlodipine-Induced Liver Injury. Cureus. 2022;14(3):e23441. doi:10.7759/cureus.23441.
  • Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi:10.1186/s40168-016-0222-x.
  • Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–1340. doi:10.1161/hypertensionaha.115.05315.
  • Mohammed NE, Messiha BA, Abo-Saif AA. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saudi Pharm J. 2016;24(6):635–644. doi:10.1016/j.jsps.2015.04.004.
  • Kaya H, Polat B, Albayrak A, Mercantepe T, Buyuk B. Protective effect of an L-type calcium channel blocker, amlodipine, on paracetamol-induced hepatotoxicity in rats. Hum Exp Toxicol. 2018;37(11):1169–1179. doi:10.1177/0960327118758382.
  • Dey P. The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life Sci. 2020;258:118172. doi:10.1016/j.lfs.2020.118172.
  • Schneider KM, Elfers C, Ghallab A, Schneider CV, Galvez EJC, Mohs A, Gui W, Candels LS, Wirtz TH, Zuehlke S, et al. Intestinal dysbiosis amplifies acetaminophen-induced acute liver injury. Cell Mol Gastroenterol Hepatol. 2021;11(4):909–933. doi:10.1016/j.jcmgh.2020.11.002.
  • Ren Y, Xu Z, Qiao Z, Wang X, Yang C. Flaxseed lignan alleviates the paracetamol-induced hepatotoxicity associated with regulation of gut microbiota and serum metabolome. Nutrients. 2024;16(2):295. doi:10.3390/nu16020295.
  • Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–903. doi:10.1038/nmeth.3589.
  • Moreels T, Nieuwendijk R, De Man J, Winter D, Herman A, Van Marck E, Pelckmans P. Concurrent infection with schistosoma mansoni attenuates inflammation induced changes in colonic morphology, cytokine levels, and smooth muscle contractility of trinitrobenzene sulphonic acid induced colitis in rats. Gut. 2004;53(1):99–107. doi:10.1136/gut.53.1.99.
  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi:10.1002/hep.20701.
  • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–360. doi:10.1038/nmeth.3317.
  • Wang L, Feng Z, Wang X, Wang X, Zhang X. Degseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26(1):136–138. doi:10.1093/bioinformatics/btp612.
  • Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29(14):1830–1831. doi:10.1093/bioinformatics/btt285.