1,213
Views
0
CrossRef citations to date
0
Altmetric
Review

Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics

, & ORCID Icon
Article: 2328868 | Received 01 Feb 2024, Accepted 06 Mar 2024, Published online: 14 Mar 2024

References

  • Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–23. doi:10.1016/j.cell.2012.01.035.
  • Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther. 2014;39(8):751–766. doi:10.1111/apt.12665.
  • Gauthier GM. Fungal Dimorphism and Virulence: Molecular Mechanisms for Temperature Adaptation, Immune Evasion, and In Vivo Survival. Mediators Inflamm. 2017;2017:1–8. doi:10.1155/2017/8491383.
  • Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host & Microbe. 2019;25(3):432–443.e6. doi:10.1016/j.chom.2019.02.008.
  • Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 2011;10(2):112–122. doi:10.1038/nrmicro2711.
  • Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704. doi:10.1038/s41575-019-0209-8.
  • Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol. 2012;13(9):817–822. doi:10.1038/ni.2369.
  • Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605. doi:10.1038/nm.4102.
  • Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, Inui M, Takai T, Shibuya A, Saijo S. et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol. 2007;8(6):619–629. doi:10.1038/ni1466.
  • Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, Migaud M, Gao IH, Lin WY, Kusakabe T. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184(4):1017–1031.e14. doi:10.1016/j.cell.2021.01.016.
  • Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, Forster I, Ruland J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;442(7103):651–656. doi:10.1038/nature04926.
  • Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, Geijtenbeek TB. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol. 2012;13(3):246–254. doi:10.1038/ni.2222.
  • Ketelut-Carneiro N, Ghosh S, Levitz SM, Fitzgerald KA, da Silva JS. A dectin-1-caspase-8 pathway licenses canonical caspase-1 inflammasome activation and interleukin-1β release in response to a pathogenic fungus. J Infect Dis. 2018;217(2):329–339. doi:10.1093/infdis/jix568.
  • Liang N, Yang YP, Li W, Wu YY, Zhang ZW, Luo Y, Fan YM. Overexpression of NLRP 3, NLRC 4 and AIM 2 inflammasomes and their priming-associated molecules (TLR 2, TLR 4, dectin-1, dectin-2 and NF κB) in Malassezia folliculitis. Mycoses. 2018;61(2):111–118. doi:10.1111/myc.12711.
  • Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489. doi:10.1038/s41577-019-0165-0.
  • Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13(2):148–159. doi:10.1038/cmi.2015.95.
  • Zhang Z, Chen Y, Yin Y, Chen Y, Chen Q, Bing Z, Zheng Y, Hou Y, Shen S, Chen Y. et al. Candida tropicalis induces NLRP3 inflammasome activation via glycogen metabolism-dependent glycolysis and JAK-STAT1 signaling pathway in myeloid-derived suppressor cells to promote colorectal carcinogenesis. Int Immunopharmacol. 2022;113:109430. doi:10.1016/j.intimp.2022.109430.
  • Zhu LL, Zhao XQ, Jiang C, You Y, Chen XP, Jiang YY, Jia XM, Lin X. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39(2):324–334. doi:10.1016/j.immuni.2013.05.017.
  • Talapko J, Mestrovic T, Dmitrovic B, Juzbasic M, Matijevic T, Bekic S, Eric S, Flam J, Belic D, Petek Eric A. et al. A putative role of Candida albicans in promoting cancer development: a Current state of evidence and proposed mechanisms. Microorganisms. 2023;11(6):1476. doi:10.3390/microorganisms11061476.
  • Aparicio-Fernandez L, Antoran A, Areitio M, Rodriguez-Erenaga O, Martin-Souto L, Buldain I, Marquez J, Benedicto A, Arteta B, Pellon A. et al. Candida albicans increases the aerobic glycolysis and activates MAPK–dependent inflammatory response of liver sinusoidal endothelial cells. Microbes Infect. 2024;105305:105305. doi:10.1016/j.micinf.2024.105305.
  • Zheng NX, Wang Y, Hu DD, Yan L, Jiang YY. The role of pattern recognition receptors in the innate recognition of Candida albicans. Virulence. 2015;6(4):347–361. doi:10.1080/21505594.2015.1014270.
  • Luisa Gil M, Murciano C, Yanez A, Gozalbo D. Role of Toll-like receptors in systemic Candida albicans infections. Front Biosci. 2016;21(2):278–302. doi:10.2741/4388.
  • Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL. Immune defence against Candida fungal infections. Nat Rev Immunol. 2015;15(10):630–642. doi:10.1038/nri3897.
  • Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T. et al. Identification of distinct ligands for the C-type lectin receptors mincle and dectin-2 in the pathogenic fungus malassezia. Cell Host Microbe. 2013;13(4):477–488. doi:10.1016/j.chom.2013.03.008.
  • Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32(1):19–25. doi:10.1016/j.it.2010.10.002.
  • Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, Jiang C, Zhao X, Hou Y, Hung MC. et al. The adaptor protein CARD9 protects against colon cancer by Restricting Mycobiota-Mediated Expansion of Myeloid-Derived Suppressor Cells. Immunity. 2018;49(3):504–514.e4. doi:10.1016/j.immuni.2018.08.018.
  • Weber R, Riester Z, Huser L, Sticht C, Siebenmorgen A, Groth C, Hu X, Altevogt P, Utikal JS, Umansky V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J Immunother Cancer. 2020;8(2) doi:10.1136/jitc-2020-000949.
  • Wang Y, Liu H, Zhang Z, Bian D, Shao K, Wang S, Ding Y. G-MDSC-derived exosomes mediate the differentiation of M-MDSC into M2 macrophages promoting colitis-to-cancer transition. J Immunother Cancer. 2023;11(6)doi:10.1136/jitc-2022-006166.
  • Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K. et al. Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest. 2013;123(10):4464–4478. doi:10.1172/JCI68189.
  • Bacher P, Hohnstein T, Beerbaum E, Rocker M, Blango MG, Kaufmann S, Rohmel J, Eschenhagen P, Grehn C, Seidel K. et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell. 2019;176(6):1340–1355.e15. doi:10.1016/j.cell.2019.01.041.
  • LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8(6):630–638. doi:10.1038/ni1460.
  • Sparber F, De Gregorio C, Steckholzer S, Ferreira FM, Dolowschiak T, Ruchti F, Kirchner FR, Mertens S, Prinz I, Joller N. et al. The skin commensal yeast malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host & Microbe. 2019;25(3):389–403.e6. doi:10.1016/j.chom.2019.02.002.
  • Shao S, Yu X, Shen L. Autoimmune thyroid diseases and Th17/Treg lymphocytes. Life Sci. 2018;192:160–165. doi:10.1016/j.lfs.2017.11.026.
  • Noda S, Suarez-Farinas M, Ungar B, Kim SJ, de Guzman Strong C, Xu H, Peng X, Estrada YD, Nakajima S, Honda T. et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136(5):1254–1264. doi:10.1016/j.jaci.2015.08.015.
  • Rovedatti L, Kudo T, Biancheri P, Sarra M, Knowles CH, Rampton DS, Corazza GR, Monteleone G, Di Sabatino A, Macdonald TT. Differential regulation of interleukin 17 and interferon production in inflammatory bowel disease. Gut. 2009;58(12):1629–1636. doi:10.1136/gut.2009.182170.
  • Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453(7191):65–71. doi:10.1038/nature06880.
  • Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 2011;14(4):386–391. doi:10.1016/j.mib.2011.07.015.
  • Moschen AR, Tilg H, Raine T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat Rev Gastroenterol Hepatol. 2019;16(3):185–196. doi:10.1038/s41575-018-0084-8.
  • Yan J, Smyth MJ, Teng MWL. Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb Perspect Biol. 2018;10(7):a028530. doi:10.1101/cshperspect.a028530.
  • MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol. 2022;32(10):2565–2581. doi:10.1111/mec.16411.
  • Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL, Lorenz M. Contributions of Candida albicans Dimorphism, adhesive interactions, and extracellular matrix to the formation of dual-species biofilms with streptococcus gordonii. mBio. 2019;10(3). doi:10.1128/mBio.01179-19.
  • Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial–fungal interactions. Nat Rev Microbiol. 2010;8(5):340–349. doi:10.1038/nrmicro2313.
  • Garcia C, Tebbji F, Daigneault M, Liu NN, Kohler JR, Allen-Vercoe E, Sellam A, Mitchell AP. The human gut microbial metabolome modulates fungal growth via the TOR signaling pathway. mSphere. 2017;2(6). doi:10.1128/mSphere.00555-17.
  • Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, Simms-Waldrip TR, Xie Y, Hooper LV, Koh AY. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–814. doi:10.1038/nm.3871.
  • Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9(1):8872. doi:10.1038/s41598-019-45467-7.
  • Cabral DJ, Penumutchu S, Norris C, Morones-Ramirez JR, Belenky P. Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor. Microb Cell. 2018;5(5):249–255. doi:10.15698/mic2018.05.631.
  • Eckstein MT, Moreno-Velasquez SD, Perez JC. Gut bacteria shape intestinal microhabitats occupied by the fungus Candida albicans. Curr Biol. 2020;30(23):4799–4807.e4. doi:10.1016/j.cub.2020.09.027.
  • Zeise KD, Woods RJ, Huffnagle GB. Interplay between Candida albicans and lactic acid bacteria in the gastrointestinal tract: impact on colonization resistance, microbial carriage, opportunistic infection, and Host immunity. Clin Microbiol Rev. 2021;34(4):e0032320. doi:10.1128/CMR.00323-20.
  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A. et al. Human gut bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517(7533):165–169. doi:10.1038/nature13995.
  • Valentine M, Benade E, Mouton M, Khan W, Botha A. Binary interactions between the yeast Candida albicans and two gut-associated bacteroides species. Microb Pathog. 2019;135:103619. doi:10.1016/j.micpath.2019.103619.
  • Perez JC. The interplay between gut bacteria and the yeast Candida albicans. Gut Microbes. 2021;13(1):1979877. doi:10.1080/19490976.2021.1979877.
  • Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, Kao JY, Young VB, Huffnagle GB, Deepe GS. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun. 2012;80(10):3371–3380. doi:10.1128/IAI.00449-12.
  • Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3(1):2191. doi:10.1038/srep02191.
  • Seelbinder B, Chen J, Brunke S, Vazquez-Uribe R, Santhaman R, Meyer AC, de Oliveira Lino FS, Chan KF, Loos D, Imamovic L. et al. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome. 2020;8(1):133. doi:10.1186/s40168-020-00899-6.
  • Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, Whitt J, Alenghat T, Way SS. Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria. Cell Host Microbe. 2017;22(6):809–816.e4. doi:10.1016/j.chom.2017.10.013.
  • van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin JB, Vicentini FA, Keenan CM, Ramay HR, Samara J. et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11(1):2577. doi:10.1038/s41467-020-16431-1.
  • Sovran B, Planchais J, Jegou S, Straube M, Lamas B, Natividad JM, Agus A, Dupraz L, Glodt J, Da Costa G. et al. Enterobacteriaceae are essential for the modulation of colitis severity by fungi. Microbiome. 2018;6(1):152. doi:10.1186/s40168-018-0538-9.
  • Jang YJ, Kim WK, Han DH, Lee K, Ko G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes. 2019;10(6):696–711. doi:10.1080/19490976.2019.1589281.
  • Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16(1):19–31. doi:10.1038/nrmicro.2017.107.
  • Hasan F, Xess I, Wang X, Jain N, Fries BC. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 2009;11(8–9):753–761. doi:10.1016/j.micinf.2009.04.018.
  • Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol. 2021;47(1):91–111. doi:10.1080/1040841X.2020.1843400.
  • Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Curr Opin Microbiol. 2006;9(6):588–594. doi:10.1016/j.mib.2006.10.003.
  • Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP, Johnson A. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2(7):e63. doi:10.1371/journal.ppat.0020063.
  • Harriott MM, Lilly EA, Rodriguez TE, Fidel PL, Noverr MC. Candida albicans forms biofilms on the vaginal mucosa. Microbiol. 2010;156(12):3635–3644. doi:10.1099/mic.0.039354-0.
  • White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA, Cormack BP. Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog. 2007;3(12):e184. doi:10.1371/journal.ppat.0030184.
  • Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP. Complementary adhesin function in C. albicans biofilm formation. Curr Biol. 2008;18(14):1017–1024. doi:10.1016/j.cub.2008.06.034.
  • Nett JE, Marchillo K, Spiegel CA, Andes DR. Development and validation of an in vivo Candida albicans biofilm denture model. Infect Immun. 2010;78(9):3650–3659. doi:10.1128/IAI.00480-10.
  • Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A, Davis D. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One. 2011;6(1):e16218. doi:10.1371/journal.pone.0016218.
  • Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004;72(10):6023–6031. doi:10.1128/IAI.72.10.6023-6031.2004.
  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD. et al. Novel entries in a fungal biofilm matrix encyclopedia. mBio. 2014;5(4):e01333–01314. doi:10.1128/mBio.01333-14.
  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67(7):2982–2992. doi:10.1128/AEM.67.7.2982-2992.2001.
  • Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Blass M, Claus R, Barz D, Scherlach K, Hertweck C, Loffler J. et al. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. mBio. 2015;6(2):e00143. doi:10.1128/mBio.00143-15.
  • Fan F, Liu Y, Liu Y, Lv R, Sun W, Ding W, Cai Y, Li W, Liu X, Qu W. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int J Antimicrob Agents. 2022;60(5–6):106673. doi:10.1016/j.ijantimicag.2022.106673.
  • Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Iran J Pediatr Hematol Oncol. 2012;2012:1–14. doi:10.1155/2012/528521.
  • Lachat J, Pascault A, Thibaut D, Le Borgne R, Verbavatz JM, Weiner A. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat Commun. 2022;13(1):3781. doi:10.1038/s41467-022-31237-z.
  • Wang X, Zhang W, Wu W, Wu S, Young A, Yan Z. Is Candida albicans a contributor to cancer? A critical review based on the current evidence. Microbiol Res. 2023;272:127370. doi:10.1016/j.micres.2023.127370.
  • Tsang PW, Fong WP, Samaranayake LP, Sturtevant J. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage. PLoS One. 2017;12(12):e0189219. doi:10.1371/journal.pone.0189219.
  • Reyna-Beltran E, Iranzo M, Calderon-Gonzalez KG, Mondragon-Flores R, Labra-Barrios ML, Mormeneo S, Luna-Arias JP. The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis, and osmotic protection. J Biol Chem. 2018;293(12):4304–4323. doi:10.1074/jbc.M117.810440.
  • Alnuaimi AD, Ramdzan AN, Wiesenfeld D, O’Brien-Simpson NM, Kolev SD, Reynolds EC, McCullough MJ. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects. Oral Dis. 2016;22(8):805–814. doi:10.1111/odi.12565.
  • Conkova E, Proskovcova M, Vaczi P, Malinovska Z. In Vitro Biofilm Formation by Malassezia pachydermatis Isolates and Its Susceptibility to Azole Antifungals. J Fungi (Basel). 2022;8(11):1209. doi:10.3390/jof8111209.
  • Angiolella L, Leone C, Rojas F, Mussin J, de Los Angeles Sosa M, Giusiano G. Biofilm, adherence, and hydrophobicity as virulence factors in Malassezia furfur. Med Mycol. 2018;56(1):110–116. doi:10.1093/mmy/myx014.
  • Morelli KA, Kerkaert JD, Cramer RA, Xue C. Aspergillus fumigatus biofilms: toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathog. 2021;17(8):e1009794. doi:10.1371/journal.ppat.1009794.
  • Walsh TJ, Schlegel R, Moody MM, Costerton JW, Salcman M. Ventriculoatrial shunt infection due to Cryptococcus neoformans: an ultrastructural and quantitative microbiological study. Neurosurgery. 1986;18(3):373–375. doi:10.1097/00006123-198603000-00025.
  • Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Hofs S, Gratacap RL, Robbins J, Runglall M. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–68. doi:10.1038/nature17625.
  • Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, Kohli A, Islam A, Mora-Montes H, Challacombe SJ. et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe. 2010;8(3):225–235. doi:10.1016/j.chom.2010.08.002.
  • Ho J, Yang X, Nikou SA, Kichik N, Donkin A, Ponde NO, Richardson JP, Gratacap RL, Archambault LS, Zwirner CP. et al. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat Commun. 2019;10(1):2297. doi:10.1038/s41467-019-09915-2.
  • Nikou SA, Zhou C, Griffiths JS, Kotowicz NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR, Parker PJ. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Sci Signal. 2022;15(728):eabj6915. doi:10.1126/scisignal.abj6915.
  • Rogiers O, Frising UC, Kucharikova S, Jabra-Rizk MA, van Loo G, Van Dijck P, Wullaert A, Lorenz M. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae. mBio. 2019;10(1). doi:10.1128/mBio.02221-18.
  • Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL, Ho J, Huppler AR, Ramani K, McGeachy MJ, Mufazalov IA. et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci Immunol. 2017;2(17). doi:10.1126/sciimmunol.aam8834.
  • Nieminen MT, Uittamo J, Salaspuro M, Rautemaa R. Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol. 2009;45(12):e245–e248. doi:10.1016/j.oraloncology.2009.08.002.
  • Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. The malassezia genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25(1):106–141. doi:10.1128/CMR.00021-11.
  • Vlachos C, Schulte BM, Magiatis P, Adema GJ, Gaitanis G. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol. 2012;167(3):496–505. doi:10.1111/j.1365-2133.2012.11014.x.
  • Pollet M, Shaik S, Mescher M, Frauenstein K, Tigges J, Braun SA, Sondenheimer K, Kaveh M, Bruhs A, Meller S. et al. The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis. Cell Death Differ. 2018;25:1823–1836. doi:10.1038/s41418-018-0160-1.
  • Venkateswaran N, Lafita-Navarro MC, Hao YH, Kilgore JA, Perez-Castro L, Braverman J, Borenstein-Auerbach N, Kim M, Lesner NP, Mishra P. et al. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev. 2019;33(17–18):1236–1251. doi:10.1101/gad.327056.119.
  • Saxena N, Ansari KM, Kumar R, Chaudhari BP, Dwivedi PD, Das M. Role of mitogen activated protein kinases in skin tumorigenicity of patulin. Toxicol Appl Pharmacol. 2011;257(2):264–271. doi:10.1016/j.taap.2011.09.012.
  • Yagudayev E, Ray SD. Aflatoxin. In: Wexler P. editor. Encyclopedia of Toxicology. Fourth. Academic Press; 2024. pp. 193–200. doi:10.1016/B978-0-12-824315-2.00179-2.
  • Lo EKK, Wang X, Lee PK, Wong HC, Lee JC, Gomez-Gallego C, Zhao D, El-Nezami H, Li J. Mechanistic insights into zearalenone-accelerated colorectal cancer in mice using integrative multi-omics approaches. Comput Struct Biotechnol J. 2023;21:1785–1796. doi:10.1016/j.csbj.2023.02.048.
  • Sanjaya PR, Gokul S, Gururaj Patil B, Raju R. Candida in oral pre-cancer and oral cancer. Med Hypotheses. 2011;77(6):1125–1128. doi:10.1016/j.mehy.2011.09.018.
  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36(2):288–305. doi:10.1111/j.1574-6976.2011.00278.x.
  • Fakhim H, Vaezi A, Dannaoui E, Chowdhary A, Nasiry D, Faeli L, Meis JF, Badali H. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses. 2018;61(6):377–382. doi:10.1111/myc.12754.
  • Talukdar A, Barman R, Sarma A, Krishnatreya M, Sharma JD, Kataki AC. Fungal profile and antifungal susceptibility pattern of candidiasis in esophageal cancer patients. J Cancer Res Ther. 2020;16(8):S209–S212. doi:10.4103/jcrt.JCRT_581_18.
  • Scott BB, Jenkins D. Gastro-oesophageal candidiasis. Gut. 1982;23(2):137–139. doi:10.1136/gut.23.2.137.
  • Chang F, Syrjanen S, Wang L, Syrjanen K. Infectious agents in the etiology of esophageal cancer. Gastroenterology. 1992;103(4). doi:10.1016/0016-5085(92)91526-A.
  • Domingues-Ferreira M, Grumach AS, Duarte AJ, De Moraes-Vasconcelos D. Esophageal cancer associated with chronic mucocutaneous candidiasis. Could chronic candidiasis lead to esophageal cancer? Med Mycol. 2009;47(2):201–205. doi:10.1080/13693780802342545.
  • Delsing CE, Bleeker-Rovers CP, van de Veerdonk FL, Tol J, van der Meer JW, Kullberg BJ, Netea MG. Association of esophageal candidiasis and squamous cell carcinoma. Med Mycol Case Rep. 2012;1(1):5–8. doi:10.1016/j.mmcr.2012.02.003.
  • Koo S, Kejariwal D, Al-Shehri T, Dhar A, Lilic D. Oesophageal candidiasis and squamous cell cancer in patients with gain-of-function STAT1 gene mutation. United European Gastroenterol J. 2017;5(5):625–631. doi:10.1177/2050640616684404.
  • Zhu F, Willette-Brown J, Song NY, Lomada D, Song Y, Xue L, Gray Z, Zhao Z, Davis SR, Sun Z. et al. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis. Cell Host Microbe. 2017;21(4):478–493.e7. doi:10.1016/j.chom.2017.03.006.
  • Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent Advances From Basic and Clinical Studies of Esophageal Squamous Cell Carcinoma. Gastroenterology. 2015;149(7):1700–1715. doi:10.1053/j.gastro.2015.08.054.
  • Nieminen MT, Salaspuro M. Local Acetaldehyde—An Essential Role in Alcohol-Related Upper Gastrointestinal Tract Carcinogenesis. Cancers Basel. 2018;10(1):11. doi:10.3390/cancers10010011.
  • Sano T, Ozaki K, Terayama Y, Kodama Y, Matsuura T. A novel diabetic murine model of Candida albicans-induced mucosal inflammation and proliferation. J Diabetes Res. 2014;2014:1–6. doi:10.1155/2014/509325.
  • Zhong M, Xiong Y, Zhao J, Gao Z, Ma J, Wu Z, Song Y, Hong X. Candida albicans disorder is associated with gastric carcinogenesis. Theranostics. 2021;11(10):4945–4956. doi:10.7150/thno.55209.
  • Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X, Iliev ID. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 2022;185(20):3807–3822.e12. doi:10.1016/j.cell.2022.09.015.
  • Vogelaar IP, Ligtenberg MJ, van der Post RS, de Voer RM, Kets CM, Jansen TJ, Jacobs L, Schreibelt G, International Gastric Cancer Genetics G, de Vries IJ. et al. Recurrent candidiasis and early-onset gastric cancer in a patient with a genetically defined partial MYD88 defect. Fam Cancer. 2016;15(2):289–296. doi:10.1007/s10689-015-9859-z.
  • Hiengrach P, Panpetch W, Chindamporn A, Leelahavanichkul A. Helicobacter pylori, protected from antibiotics and stresses inside Candida albicans vacuoles, cause gastritis in mice. Int J Mol Sci. 2022;23(15):8568. doi:10.3390/ijms23158568.
  • Zhang Z, Feng H, Qiu Y, Xu Z, Xie Q, Ding W, Liu H, Li G. Dysbiosis of gastric mucosal fungal microbiota in the gastric cancer microenvironment. J Immunol Res. 2022;2022:1–14. doi:10.1155/2022/6011632.
  • Ndegwa N, Ploner A, Liu Z, Roosaar A, Axell T, Ye W. Association between poor oral health and gastric cancer: a prospective cohort study. Int J Cancer. 2018;143(9):2281–2288. doi:10.1002/ijc.31614.
  • Huo X, Li D, Wu F, Li S, Qiao Y, Wang C, Wang Y, Zhou C, Sun L, Luan Z. et al. Cultivated human intestinal fungus Candida metapsilosis M2006B attenuates colitis by secreting acyclic sesquiterpenoids as FXR agonists. Gut. 2022;71(11):2205–2217. doi:10.1136/gutjnl-2021-325413.
  • Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V, Gargus M, Nguyen C, Sharma P, Maymi VI. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019;25(3):377–388.e6. doi:10.1016/j.chom.2019.01.007.
  • Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I. et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–1048. doi:10.1136/gutjnl-2015-310746.
  • Gao R, Xia K, Wu M, Zhong H, Sun J, Zhu Y, Huang L, Wu X, Yin L, Yang R. et al. Alterations of gut mycobiota profiles in adenoma and colorectal cancer. Front Cell Infect Microbiol. 2022;12:839435. doi:10.3389/fcimb.2022.839435.
  • Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N. et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep. 2015;5(1):7980. doi:10.1038/srep07980.
  • Jin H, Zhang C. High fat high calories diet (HFD) increase gut susceptibility to Carcinogens by altering the gut microbial community. J Cancer. 2020;11(14):4091–4098. doi:10.7150/jca.43561.
  • Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15(2):103–113. doi:10.1016/j.ccr.2009.01.001.
  • Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y. et al. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J. 2021;40(11):e105320. doi:10.15252/embj.2020105320.
  • Malik A, Sharma D, Malireddi RKS, Guy CS, Chang TC, Olsen SR, Neale G, Vogel P, Kanneganti TD. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity. 2018;49(3):515–530 e515. doi:10.1016/j.immuni.2018.08.024.
  • Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J, Koyama Y. et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest. 2017;127:2829–2841. doi:10.1172/JCI90562.
  • Zeng S, Rosati E, Saggau C, Messner B, Chu H, Duan Y, Hartmann P, Wang Y, Ma S, Huang WJM. et al. Candida albicans-specific Th17 cell-mediated response contributes to alcohol-associated liver disease. Cell Host Microbe. 2023;31(3):389–404.e7. doi:10.1016/j.chom.2023.02.001.
  • Chu H, Duan Y, Lang S, Jiang L, Wang Y, Llorente C, Liu J, Mogavero S, Bosques-Padilla F, Abraldes JG. et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J Hepatol. 2020;72(3):391–400. doi:10.1016/j.jhep.2019.09.029.
  • Furuya S, Cichocki JA, Konganti K, Dreval K, Uehara T, Katou Y, Fukushima H, Kono H, Pogribny IP, Argemi J. et al. Histopathological and molecular signatures of a mouse Model of acute-on-chronic alcoholic liver injury demonstrate concordance with human alcoholic hepatitis. Toxicol Sci. 2019;170(2):427–437. doi:10.1093/toxsci/kfy292.
  • Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R. et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68(6):1014–1023. doi:10.1136/gutjnl-2017-315084.
  • Liu Z, Li Y, Li C, Lei G, Zhou L, Chen X, Jia X, Lu Y. Intestinal Candida albicans promotes hepatocarcinogenesis by up-regulating NLRP6. Front Microbiol. 2022;13:812771. doi:10.3389/fmicb.2022.812771.
  • Zhang L, Chen C, Chai D, Li C, Qiu Z, Kuang T, Liu L, Deng W, Wang W. Characterization of the intestinal fungal microbiome in patients with hepatocellular carcinoma. J Transl Med. 2023;21(1):126. doi:10.1186/s12967-023-03940-y.
  • Usami M, Miyoshi M, Kanbara Y, Aoyama M, Sakaki H, Shuno K, Hirata K, Takahashi M, Ueno K, Hamada Y. et al. Analysis of fecal microbiota, organic acids and plasma lipids in hepatic cancer patients with or without liver cirrhosis. Clin Nutr. 2013;32(3):444–451. doi:10.1016/j.clnu.2012.09.010.
  • Ramirez-Garcia A, Rementeria A, Aguirre-Urizar JM, Moragues MD, Antoran A, Pellon A, Abad-Diaz-de-Cerio A, Hernando FL. Candida albicans and cancer: can this yeast induce cancer development or progression? Crit Rev Microbiol. 2016;42(2):181–193. doi:10.3109/1040841X.2014.913004.
  • Nasri E, Vaezi A, Falahatinejad M, Rizi MH, Sharifi M, Sadeghi S, Ataei B, Mirhendi H, Fakhim H. Species distribution and susceptibility profiles of oral candidiasis in hematological malignancy and solid tumor patients. Braz J Microbiol. 2023;54(1):143–149. doi:10.1007/s42770-022-00863-6.
  • Robinson S, Peterson CB, Sahasrabhojane P, Ajami NJ, Shelburne SA, Kontoyiannis DP, Galloway-Pena JR, Perlin DS. Observational cohort study of oral mycobiome and Interkingdom Interactions over the course of induction therapy for leukemia. mSphere. 2020;5(2). doi:10.1128/mSphere.00048-20.
  • Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M. et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science. 2012;336(6086):1314–1317. doi:10.1126/science.1221789.
  • Zhang Z, Zheng Y, Chen Y, Yin Y, Chen Y, Chen Q, Hou Y, Shen S, Lv M, Wang T. Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis. Exp Hematol Oncol. 2022;11(1):88. doi:10.1186/s40164-022-00334-6.
  • Qu J, Sun Z, Peng C, Li D, Yan W, Xu Z, Hou Y, Shen S, Chen P, Wang T. C. tropicalis promotes chemotherapy resistance in colon cancer through increasing lactate production to regulate the mismatch repair system. Int J Biol Sci. 2021;17(11):2756–2769. doi:10.7150/ijbs.59262.
  • Qu J, Chen Q, Bing Z, Shen S, Hou Y, Lv M, Wang T. C. tropicalis promotes CRC by down-regulating tumor cell-intrinsic PD-1 receptor via autophagy. J Cancer. 2023;14(10):1794–1808. doi:10.7150/jca.79664.
  • Ianiri G, LeibundGut-Landmann S, Dawson TL Jr. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol. 2022;76(1):757–782. doi:10.1146/annurev-micro-040820-010114.
  • Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA. et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5(1):153. doi:10.1186/s40168-017-0373-4.
  • Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR. et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–1192. doi:10.1126/science.1171700.
  • Sato Y, Fujimura T, Tanita K, Chunbing L, Matsushita S, Fujisawa Y, Otsuka A, Yamamoto Y, Hidaka T, Aiba S. Malassezia -derived aryl hydrocarbon receptor ligands enhance the CCL20/Th17/soluble CD163 pathogenic axis in extra-mammary Paget’s disease. Exp Dermatol. 2019;28(8):933–939. doi:10.1111/exd.13944.
  • Gao R, Kong C, Li H, Huang L, Qu X, Qin N, Qin H. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis. 2017;36(12):2457–2468. doi:10.1007/s10096-017-3085-6.
  • Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY, Yu J. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68(4):654–662. doi:10.1136/gutjnl-2018-317178.
  • Stasiewicz M, Kwasniewski M, Karpinski TM. Microbial associations with pancreatic cancer: a new frontier in biomarkers. Cancers Basel. 2021;13(15):3784. doi:10.3390/cancers13153784.
  • Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019;574(7777):264–267. doi:10.1038/s41586-019-1608-2.
  • Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S. et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 2022;40(2):153–167.e11. doi:10.1016/j.ccell.2022.01.003.
  • Wolf AJ, Limon JJ, Nguyen C, Prince A, Castro A, Underhill DM. Malassezia spp. induce inflammatory cytokines and activate NLRP3 inflammasomes in phagocytes. J Leukoc Biol. 2021;109:161–172. doi:10.1002/JLB.2MA0820-259R.
  • Kistowska M, Fenini G, Jankovic D, Feldmeyer L, Kerl K, Bosshard P, Contassot E, French LE. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling. Exp Dermatol. 2014;23(12):884–889. doi:10.1111/exd.12552.
  • De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C, Protti MP. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011;208(3):469–478. doi:10.1084/jem.20101876.
  • Kharofa J, Haslam D, Wilkinson R, Weiss A, Patel S, Wang K, Esslinger H, Olowokure O, Sohal D, Wilson G. et al. Analysis of the fecal metagenome in long-term survivors of pancreas cancer. Cancer. 2023;129(13):1986–1994. doi:10.1002/cncr.34748.
  • Lin Y, Lau HC, Liu Y, Kang X, Wang Y, Ting NL, Kwong TN, Han J, Liu W, Liu C. et al. Altered mycobiota signatures and enriched pathogenic aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology. 2022;163(4):908–921. doi:10.1053/j.gastro.2022.06.038.
  • Li B, Jiang T, Liu H, Miao Z, Fang D, Zheng L, Zhao J. Andrographolide protects chondrocytes from oxidative stress injury by activation of the Keap1–Nrf2–are signaling pathway. J Cell Physiol. 2018;234(1):561–571. doi:10.1002/jcp.26769.
  • Fang J, Zhu P, Yang Z, Peng X, Zuo Z, Cui H, Ouyang P, Shu G, Chen Z, Huang C. et al. Selenium Ameliorates AFB1−Induced Excess Apoptosis in Chicken Splenocytes Through Death Receptor and Endoplasmic Reticulum Pathways. Biol Trace Elem Res. 2019;187(1):273–280. doi:10.1007/s12011-018-1361-7.
  • Liu NN, Jiao N, Tan JC, Wang Z, Wu D, Wang AJ, Chen J, Tao L, Zhou C, Fang W. et al. Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 2022;7(2):238–250. doi:10.1038/s41564-021-01030-7.
  • Leonardi I, Paramsothy S, Doron I, Semon A, Kaakoush NO, Clemente JC, Faith JJ, Borody TJ, Mitchell HM, Colombel JF. et al. Fungal Trans-kingdom Dynamics Linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe. 2020;27(5):823–829.e3. doi:10.1016/j.chom.2020.03.006.
  • Richard ML, Liguori G, Lamas B, Brandi G, da Costa G, Hoffmann TW, Pierluigi Di Simone M, Calabrese C, Poggioli G, Langella P. et al. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes. 2018;9(2):131–142. doi:10.1080/19490976.2017.1379637.
  • Huang X, Hu M, Sun T, Li J, Zhou Y, Yan Y, Xuan B, Wang J, Xiong H, Ji L. et al. Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts. Cell Host Microbe. 2023;31(11):1930–1943.e4. doi:10.1016/j.chom.2023.10.005.
  • Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE, Amit G, Gonzalez A. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 2022;185(20):3789–3806.e17. doi:10.1016/j.cell.2022.09.005.
  • Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–976. doi:10.1126/science.1240537.
  • Daillere R, Vetizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP. et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–943. doi:10.1016/j.immuni.2016.09.009.
  • Zheng DW, Dong X, Pan P, Chen KW, Fan JX, Cheng SX, Zhang XZ. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng. 2019;3(9):717–728. doi:10.1038/s41551-019-0423-2.
  • Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release. 2020;326:396–407. doi:10.1016/j.jconrel.2020.07.009.
  • Lam S, Bai X, Shkoporov AN, Park H, Wu X, Lan P, Zuo T. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol. 2022;7(5):472–484. doi:10.1016/S2468-1253(21)00303-4.
  • Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, Zhang F, Tang W, Ching JYL, Wu JCY. et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in clostridium difficile infection. Nat Commun. 2018;9(1):3663. doi:10.1038/s41467-018-06103-6.
  • Zhang F, Zuo T, Yeoh YK, Cheng FWT, Liu Q, Tang W, Cheung KCY, Yang K, Cheung CP, Mo CC. et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nat Commun. 2021;12(1):65. doi:10.1038/s41467-020-20240-x.
  • Halkjaer SI, Christensen AH, Lo BZS, Browne PD, Gunther S, Hansen LH, Petersen AM. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut. 2018;67(12):2107–2115. doi:10.1136/gutjnl-2018-316434.
  • Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejia JL, Zuffa S, Swann JR, Hansen LH, Vogensen FK, Hansen AK, Nielsen DS. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut. 2020;69(12).doi:10.1136/gutjnl-2019-320005.
  • Chen Q, Fan Y, Zhang B, Yan C, Chen Z, Wang L, Hu Y, Huang Q, Su J, Ren J. et al. Specific fungi associated with response to capsulized fecal microbiota transplantation in patients with active ulcerative colitis. Front Cell Infect Microbiol. 2022;12:1086885. doi:10.3389/fcimb.2022.1086885.
  • Wang Y, Wiesnoski DH, Helmink BA, Gopalakrishnan V, Choi K, DuPont HL, Jiang ZD, Abu-Sbeih H, Sanchez CA, Chang CC. et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med. 2018;24(12):1804–1808. doi:10.1038/s41591-018-0238-9.
  • Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014;312(17):1772–1778. doi:10.1001/jama.2014.13875.
  • Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, Dejaco C, Papay P, Novacek G, Trauner M, Loy A, Berry D. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol. 2013;108(10):1620–1630. doi:10.1038/ajg.2013.257.
  • Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, Aroniadis O, Barto A, Borody T, Giovanelli A. et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065–1071. doi:10.1038/ajg.2014.133.
  • Kazmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management – fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 2020;11(6):1518–1530. doi:10.1080/19490976.2020.1764309.
  • de Menezes APM, Aguiar RPS, Santos JVO, Sarkar C, Islam MT, Braga AL, Hasan MM, da Silva FCC, Sharifi-Rad J, Dey A. et al. Citrinin as a potential anti-cancer therapy: a comprehensive review. Chem Biol Interact. 2023;381:110561. doi:10.1016/j.cbi.2023.110561.
  • de Oliveira Filho JWG, Andrade T, de Lima RMT, Dos Reis AC, Silva DHS, Santos JVO, de Menezes APM, da Mata AMO, Dias ACS, de Alencar M. et al. Citrinin against breast cancer: A cytogenotoxicological study. Phytother Res. 2021;35(1):504–516. doi:10.1002/ptr.6830.
  • Demir G, Klein HO, Mandel-Molinas N, Tuzuner N. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. Int Immunopharmacol. 2007;7(1):113–116. doi:10.1016/j.intimp.2006.08.011.
  • Yoon TJ, Kim TJ, Lee H, Shin KS, Yun YP, Moon WK, Kim DW, Lee KH. Anti-tumor metastatic activity of β-glucan purified from mutated Saccharomyces cerevisiae. Int Immunopharmacol. 2008;8(1):36–42. doi:10.1016/j.intimp.2007.10.005.
  • Zhang M, Chun L, Sandoval V, Graor H, Myers J, Nthale J, Rauhe P, Senders Z, Choong K, Huang AY. et al. Systemic administration of β-glucan of 200 kDa modulates melanoma microenvironment and suppresses metastatic cancer. Oncoimmunology. 2018;7(2):e1387347. doi:10.1080/2162402X.2017.1387347.
  • Bae SY, Liao L, Park SH, Kim WK, Shin J, Lee SK. Antitumor activity of asperphenin A, a lipopeptidyl benzophenone from marine-derived Aspergillus sp. Fungus, by inhibiting tubulin polymerization in colon cancer Cells. Mar Drugs. 2020;18(2):110. doi:10.3390/md18020110.
  • Malhao F, Ramos AA, Buttachon S, Dethoup T, Kijjoa A, Rocha E. Cytotoxic and antiproliferative effects of Preussin, a hydroxypyrrolidine derivative from the Marine sponge-associated fungus aspergillus candidus KUFA 0062, in a panel of breast cancer cell lines and using 2D and 3D cultures. Mar Drugs. 2019;17(8):448. doi:10.3390/md17080448.
  • Vidya B, Palaniswamy M, Angayarkanni J, Ayub Nawaz K, Thandeeswaran M, Krishna Chaithanya K, Tekluu B, Muthusamy K, Gopalakrishnan VK. Purification and characterization of beta-galactosidase from newly isolated aspergillus terreus (KUBCF1306) and evaluating its efficacy on breast cancer cell line (MCF-7). Bioorg Chem. 2020;94:103442. doi:10.1016/j.bioorg.2019.103442.
  • Shiao SL, Kershaw KM, Limon JJ, You S, Yoon J, Ko EY, Guarnerio J, Potdar AA, McGovern DPB, Bose S. et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell. 2021;39(9):1202–1213.e6. doi:10.1016/j.ccell.2021.07.002.
  • Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP. et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–97. doi:10.1126/science.aan3706.
  • Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O. et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602. doi:10.1126/science.abf3363.
  • Zhang M, Kim JA, Huang AY. Optimizing Tumor Microenvironment for Cancer Immunotherapy: beta-Glucan-Based Nanoparticles. Front Immunol. 2018;9:341. doi:10.3389/fimmu.2018.00341.