2,209
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Integrated analysis of gut metabolome, microbiome, and brain function reveal the role of gut-brain axis in longevity

, , , , , , , , , , & show all
Article: 2331434 | Received 09 Oct 2023, Accepted 13 Mar 2024, Published online: 28 Mar 2024

References

  • Cai D, Zhao S, Li D, Chang F, Tian X, Huang G, Zhu Z, Liu D, Dou X, Li S. et al. Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians. Nutrients. 2016;8(9):564. doi:10.3390/nu8090564.
  • Herskind AM, McGue M, Holm NV, Sørensen TI, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet. 1996;97(3):319–17. doi:10.1007/BF02185763.
  • Cӑtoi AF, Corina A, Katsiki N, Vodnar DC, Andreicuț AD, Stoian AP, Rizzo M, Pérez-Martínez P. Gut microbiota and aging-A focus on centenarians. Biochim Biophys Acta Mol Basis Dis. 2020;1866(7):165765. doi:10.1016/j.bbadis.2020.165765.
  • Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D. et al. Gut Microbiota and Extreme Longevity. Curr Biol. 2016;26(11):1480–1485. doi:10.1016/j.cub.2016.04.016.
  • Kong F, Deng F, Li Y, Zhao J. Identification of gut microbiome signatures associated with longevity provides a promising modulation target for healthy aging. Gut Microbes. 2019;10(2):210–215. doi:10.1080/19490976.2018.1494102.
  • Wu L, Xie X, Li Y, Liang T, Zhong H, Yang L, Xi Y, Zhang J, Ding Y, Wu Q. Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident lactobacillus. Npj Biofilms Microbiomes. 2022;8(1):102. doi:10.1038/s41522-022-00366-0.
  • Pang S, Chen X, Lu Z, Meng L, Huang Y, Yu X, Huang L, Ye P, Chen X, Liang J. et al. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nat Aging. 2023;3(4):436–449. doi:10.1038/s43587-023-00389-y.
  • Chen Y, Zhang S, Zeng B, Zhao J, Yang M, Zhang M, Li Y, Ni Q, Wu D, Li Y. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany NY). 2020;12(6):4778–4793. doi:10.18632/aging.102872.
  • Mayer EA, Nance K, Chen S. The gut–brain axis. Annu Rev Med. 2022;73(1):439–453. doi:10.1146/annurev-med-042320-014032.
  • Zhou Y, Hu G, Wang MC. Host and microbiota metabolic signals in aging and longevity. Nat Chem Biol. 2021;17(10):1027–1036. doi:10.1038/s41589-021-00837-z.
  • Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T, Telenti A, Mohney RP, Small KS, Bell JT, Steves CJ. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat Genet. 2018;50(6):790–795. doi:10.1038/s41588-018-0135-7.
  • Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP, Ho JE, Jacques PF, Ghorbani A, Magnusson M, Souza AL. et al. Distinct metabolomic signatures are associated with longevity in humans. Nat Commun. 2015;6(1):6791. doi:10.1038/ncomms7791.
  • Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S, Martin F-P, Capri M, Bucci L, Ostan R. et al. Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY). 2014;6(1):9–25. doi:10.18632/aging.100630.
  • Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, Suda W, Takeshita K, Sasaki T, Okamoto S. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599(7885):458–464. doi:10.1038/s41586-021-03832-5.
  • Gong J, Liu S, Wang S, Ruan H, Mou Q, Fan P, Chen T, Cai W, Lu Y, Lu Z. Identification of fecal microbiome signatures associated with familial longevity and candidate metabolites for healthy aging. Aging Cell. 2023;22(6):e13848. doi:10.1111/acel.13848.
  • Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, Earls JC, Zimmer A, Glusman G, Robinson M. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021;3(2):274–286. doi:10.1038/s42255-021-00348-0.
  • Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV. et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013. doi:10.1152/physrev.00018.2018.
  • Tran S-S, Mohajeri MH. The role of gut bacterial metabolites in brain development, aging and disease. Nutrients. 2021;13(3):732. doi:10.3390/nu13030732.
  • Megur A, Baltriukienė D, Bukelskienė V, Burokas A. The microbiota–gut–brain axis and Alzheimer’s disease: neuroinflammation is to blame? Nutrients. 2020;13(1):37. doi:10.3390/nu13010037.
  • Caputi V, Giron MC. Microbiome-Gut-Brain Axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci. 2018;19(6):1689. doi:10.3390/ijms19061689.
  • Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacology & Therapeutics. 2016;158:52–62. doi:10.1016/j.pharmthera.2015.11.012.
  • Perls T. Dementia-free centenarians. Exp Gerontol. 2004;39(11–12):1587–1593. doi:10.1016/j.exger.2004.08.015.
  • Chen W-L, Wagner J, Heugel N, Sugar J, Lee Y-W, Conant L, Malloy M, Heffernan J, Quirk B, Zinos A. et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: advances and future directions. Front Neurosci. 2020;14:724. doi:10.3389/fnins.2020.00724.
  • Yeung MK, Chan AS. Functional near-infrared spectroscopy reveals decreased resting oxygenation levels and task-related oxygenation changes in mild cognitive impairment and dementia: a systematic review. J Psychiatr Res. 2020;124:58–76. doi:10.1016/j.jpsychires.2020.02.017.
  • Khaksari K, Chen W-L, Gropman AL. Review of applications of near-infrared spectroscopy in two rare disorders with Executive and neurological dysfunction: UCD and PKU. Genes. 2022;13(10):1690. doi:10.3390/genes13101690.
  • Cai D, Zhao Z, Zhao L, Dong Y, Wang L, Zhao S, Li Q. The age-accompanied and diet-associated remodeling of the phospholipid, amino acid, and SCFA metabolism of healthy centenarians from a Chinese Longevous Region: A window into exceptional longevity. Nutrients. 2022;14(20):4420. doi:10.3390/nu14204420.
  • Ngo D-H, Vo TS. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules. 2019;24(15):2678. doi:10.3390/molecules24152678.
  • Chun L, Gong J, Yuan F, Zhang B, Liu H, Zheng T, Yu T, Xu XZS, Liu J. Metabotropic GABA signalling modulates longevity in C. elegans. Nat Commun. 2015;6(1):8828. doi:10.1038/ncomms9828.
  • Xu W, Gao L, Li T, Shao A, Zhang J. Neuroprotective Role of Agmatine in Neurological Diseases. Curr Neuropharmacol. 2018;16(9):1296–1305. doi:10.2174/1570159X15666170808120633.
  • Connell E, Le Gall G, Pontifex MG, Sami S, Cryan JF, Clarke G, Müller M, Vauzour D. Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener. 2022;17(1):43. doi:10.1186/s13024-022-00548-6.
  • Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L, Wood TK, Hejndorf S, Ng YZ, Low JZY, Rossant J. et al. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A. 2021;118(27):e2021091118. doi:10.1073/pnas.2021091118.
  • Ramírez-Guerrero S, Guardo-Maya S, Medina-Rincón GJ, Orrego-González EE, Cabezas-Pérez R, González-Reyes RE. Taurine and astrocytes: a homeostatic and neuroprotective relationship. Front Mol Neurosci. 2022;15:937789. doi:10.3389/fnmol.2022.937789.
  • Teruya T, Chen Y-J, Kondoh H, Fukuji Y, Yanagida M. Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. Proc Natl Acad Sci U S A. 2021;118(37):e2022857118. doi:10.1073/pnas.2022857118.
  • Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev. 2021;71:101422. doi:10.1016/j.arr.2021.101422.
  • Conte M, Ostan R, Fabbri C, Santoro A, Guidarelli G, Vitale G, Mari D, Sevini F, Capri M, Sandri M. et al. Human aging and longevity are characterized by high levels of Mitokines. J Gerontol A Biol Sci Med Sci. 2019;74:600–607. doi:10.1093/gerona/gly153.
  • Collino S, Montoliu I, Martin F-P, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E. et al. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PloS One. 2013;8(3):e56564. doi:10.1371/journal.pone.0056564.
  • Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell. 2017;16(4):634–643. doi:10.1111/acel.12605.
  • Mangoni AA, Rodionov RN, McEvoy M, Zinellu A, Carru C, Sotgia S. New horizons in arginine metabolism, ageing and chronic disease states. Age Ageing. 2019;48(6):776–782. doi:10.1093/ageing/afz083.
  • Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y. et al. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res. 2016;60(1):134–146. doi:10.1002/mnfr.201500031.
  • Rampelli S, Soverini M, D’Amico F, Barone M, Tavella T, Monti D, Capri M, Astolfi A, Brigidi P, Biagi E. et al. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems. 2020;5(2):e00124–20. doi:10.1128/mSystems.00124-20.
  • Xu Q, Wu C, Zhu Q, Gao R, Lu J, Valles-Colomer M, Zhu J, Yin F, Huang L, Ding L. et al. Metagenomic and metabolomic remodeling in nonagenarians and centenarians and its association with genetic and socioeconomic factors. Nat Aging. 2022;2(5):438–452. doi:10.1038/s43587-022-00193-0.
  • Li C, Luan Z, Zhao Y, Chen J, Yang Y, Wang C, Jing Y, Qi S, Li Z, Guo H. et al. Deep insights into the gut microbial community of extreme longevity in south Chinese centenarians by ultra-deep metagenomics and large-scale culturomics. Npj Biofilms Microbiomes. 2022;8(1):28. doi:10.1038/s41522-022-00282-3.
  • Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022;19(10):625–637. doi:10.1038/s41575-022-00631-9.
  • Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. doi:10.3389/fimmu.2020.00906.
  • Yao Y, Yan L, Chen H, Wu N, Wang W, Wang D. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine. 2020;77:153268. doi:10.1016/j.phymed.2020.153268.
  • Qin Q, Yan S, Yang Y, Chen J, Li T, Gao X, Yan H, Wang Y, Wang J, Wang S. et al. A metagenome-wide association study of the gut microbiome and metabolic syndrome. Front Microbiol. 2021;12:682721. doi:10.3389/fmicb.2021.682721.
  • Li H, Xu H, Li Y, Jiang Y, Hu Y, Liu T, Tian X, Zhao X, Zhu Y, Wang S. et al. Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms. Nat Commun. 2020;11(1):3218. doi:10.1038/s41467-020-16990-3.
  • Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg. 2016;36:607–612. doi:10.1016/j.ijsu.2016.11.024.
  • Williams BL, Hornig M, Parekh T, Lipkin WI, Biron C. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012;3(1):e00261–11. doi:10.1128/mBio.00261-11.
  • Kaakoush NO. Sutterella Species, IgA-degrading Bacteria in Ulcerative Colitis. Trends Microbiol. 2020;28(7):519–522. doi:10.1016/j.tim.2020.02.018.
  • Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC, Mohney RP, Li W, de Rinaldis E, Bell JT, Venter JC. et al. Interplay between the human gut microbiome and host metabolism. Nat Commun. 2019;10(1):4505. doi:10.1038/s41467-019-12476-z.
  • Jiang J, Liu T, Crawford JD, Kochan NA, Brodaty H, Sachdev PS, Wen W. Stronger bilateral functional connectivity of the frontoparietal control network in near-centenarians and centenarians without dementia. Neuroimage. 2020;215:116855. doi:10.1016/j.neuroimage.2020.116855.
  • Cao N, Pi Y, Qiu F, Wang Y, Xia X, Liu Y, Zhang J. Plasticity changes in dorsolateral prefrontal cortex associated with procedural sequence learning are hemisphere-specific. Neuroimage. 2022;259:119406. doi:10.1016/j.neuroimage.2022.119406.
  • Fujiyama H, Van Soom J, Rens G, Gooijers J, Leunissen I, Levin O, Swinnen SP. Age-related changes in frontal network structural and functional connectivity in relation to bimanual movement control. J Neurosci. 2016;36(6):1808–1822. doi:10.1523/JNEUROSCI.3355-15.2016.
  • Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, DiSano M, Aron AR. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J Neurosci. 2009;29:12675–12685. doi:10.1523/JNEUROSCI.3359-09.2009.
  • Katzman R, Zhang MY, Null OYQ, Wang ZY, Liu WT, Yu E, Wong SC, Salmon DP, Grant I. A Chinese version of the mini-mental state examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol. 1988;41(10):971–978. doi:10.1016/0895-4356(88)90034-0.
  • Cong L, Ren Y, Wang Y, Hou T, Dong Y, Han X, Yin L, Zhang Q, Feng J, Wang L. et al. Mild cognitive impairment among rural-dwelling older adults in China: a community-based study. Alzheimers Dement. 2023;19(1):56–66. doi:10.1002/alz.12629.