892
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Human gut microbiota and their production of endocannabinoid-like mediators are directly affected by a dietary oil

, , , , , , , , , , & show all
Article: 2335879 | Received 02 Jan 2024, Accepted 25 Mar 2024, Published online: 02 May 2024

References

  • Santos HO, Price JC, Bueno AA. Beyond fish oil supplementation: the effects of alternative plant sources of omega-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers—an overview. Nutrients. 2020;12(10):3159. doi:10.3390/nu12103159.
  • Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M. et al. A 20-year retrospective review of global aquaculture. Nature. 2021;591(7851):551–23. doi:10.1038/s41586-021-03308-6.
  • Lane KE, Wilson M, Hellon TG, Davies IG. Bioavailability and conversion of plant based sources of omega-3 fatty acids – a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci. 2022;62(18):4982–4997. doi:10.1080/10408398.2021.1880364.
  • Coupland K. Stearidonic acid: a plant produced omega‐3 PUFA and a potential alternative for marine oil fatty acids. Lipid Technol. 2008;20(7):152–154. doi:10.1002/lite.200800045.
  • Liao J, Xiong Q, Yin Y, Ling Z, Chen S. The effects of fish oil on cardiovascular diseases: systematical evaluation and recent advance. Front Cardiovasc Med. 2022;8:802306. doi:10.3389/fcvm.2021.802306.
  • Kerdiles O, Layé S, Calon F. Omega-3 polyunsaturated fatty acids and brain health: preclinical evidence for the prevention of neurodegenerative diseases. Trends Food Sci Tech. 2017;69:203–213. doi:10.1016/j.tifs.2017.09.003.
  • Liao Y, Xie B, Zhang H, He Q, Guo L, Subramanieapillai M, Fan B, Lu C, McIntyre RS. Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl Psychiat. 2019;9(1):190. doi:10.1038/s41398-019-0515-5.
  • Komal F, Khan MK, Imran M, Ahmad MH, Anwar H, Ashfaq UA, Ahmad N, Masroor A, Ahmad RS, Nadeem M. et al. Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model. J Transl Med. 2020;18(1):349. doi:10.1186/s12967-020-02519-1.
  • Freitas RDS, Campos MM. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients. 2019;11(5):945. doi:10.3390/nu11050945.
  • Li Y, Lai W, Zheng C, Babu JR, Xue C, Ai Q, Huggins KW. Neuroprotective effect of stearidonic acid on amyloid β-induced neurotoxicity in rat hippocampal cells. Antioxidants. 2022;11(12):2357. doi:10.3390/antiox11122357.
  • Lefort N, LeBlanc R, Surette ME. Dietary Buglossoides arvensis oil increases circulating n-3 polyunsaturated fatty acids in a dose-dependent manner and Enhances Lipopolysaccharide-Stimulated Whole Blood Interleukin-10—A randomized placebo-controlled trial. Nutrients. 2017;9(3):261. doi:10.3390/nu9030261.
  • Whelan J, Gouffon J, Zhao Y. Effects of dietary stearidonic acid on biomarkers of lipid Metabolism4. J Nutrition. 2012;142(3):630S–634S. doi:10.3945/jn.111.149138.
  • Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci. 2021;61(10):1725–1737. doi:10.1080/10408398.2020.1765137.
  • Greupner T, Koch E, Kutzner L, Hahn A, Schebb NH, Schuchardt JP. Single-dose SDA-Rich echium oil increases plasma EPA, DPAn3, and DHA concentrations. Nutrients. 2019;11(10):2346. doi:10.3390/nu11102346.
  • Walker CG, Jebb SA, Calder PC. Stearidonic acid as a supplemental source of ω-3 polyunsaturated fatty acids to enhance status for improved human health. Nutrition. 2013;29(2):363–369. doi:10.1016/j.nut.2012.06.003.
  • Cumberford G, Hebard A. Ahiflower oil: a novel non‐GM plant‐based omega‐3+6 source. Lipid Technol. 2015;27(9):207–210. doi:10.1002/lite.201500044.
  • Myers A, Cumberford G. Ahiflower Oil-The Rising GLA Alternative to evening primrose for women & vegans. Integr Medicine Encinitas Calif. 2021;20:30–33.
  • Fu Y, Wang Y, Gao H, Li D, Jiang R, Ge L, Tong C, Xu K. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediat Inflamm. 2021;2021:1–11. doi:10.1155/2021/8879227.
  • Roussel C, Guebara SAB, Plante PL, Desjardins Y, Marzo VD, Silvestri C. Short-term supplementation with ω-3 polyunsaturated fatty acids modulates primarily mucolytic species from the gut luminal mucin niche in a human fermentation system. Gut Microbes. 2022;14(1):2120344. doi:10.1080/19490976.2022.2120344.
  • Brown EM, Clardy J, Xavier RJ. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe. 2023;31(2):173–186. doi:10.1016/j.chom.2023.01.009.
  • Menni C, Zierer J, Pallister T, Jackson MA, Long T, Mohney RP, Steves CJ, Spector TD, Valdes AM. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep-Uk. 2017;7(1):11079. doi:10.1038/s41598-017-10382-2.
  • Druart C, Bindels LB, Schmaltz R, Neyrinck AM, Cani PD, Walter J, Ramer‐Tait AE, Delzenne NM. Ability of the gut microbiota to produce PUFA‐derived bacterial metabolites: proof of concept in germ‐free versus conventionalized mice. Mol Nutr Food Res. 2015;59(8):1603–1613. doi:10.1002/mnfr.201500014.
  • Silvestri C, Marzo VD. The gut microbiome–endocannabinoidome axis: a new way of controlling metabolism, inflammation, and behavior. Function. 2023;4(2):zqad003. doi:10.1093/function/zqad003.
  • Tagliamonte S, Gill CIR, Pourshahidi LK, Slevin MM, Price RK, Ferracane R, Lawther R, O’Connor G, Vitaglione P. Endocannabinoids, endocannabinoid-like molecules and their precursors in human small intestinal lumen and plasma: does diet affect them? Eur J Nutr. 2021;60(4):2203–2215. doi:10.1007/s00394-020-02398-8.
  • Fornelos N, Franzosa EA, Bishai J, Annand JW, Oka A, Lloyd-Price J, Arthur TD, Garner A, Avila-Pacheco J, Haiser HJ. et al. Growth effects of N-acylethanolamines on gut bacteria reflect altered bacterial abundances in inflammatory bowel disease. Nat Microbiol. 2020;5(3):486–497. doi:10.1038/s41564-019-0655-7.
  • Cohen LJ, Kang HS, Chu J, Huang YH, Gordon EA, Reddy BVB, Ternei MA, Craig JW, Brady SF. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc Natl Acad Sci. 2015;112(35):E4825–34. doi:10.1073/pnas.1508737112.
  • Lynch A, Crowley E, Casey E, Cano R, Shanahan R, McGlacken G, Marchesi JR, Clarke DJ. The Bacteroidales produce an N-acylated derivative of glycine with both cholesterol-solubilising and hemolytic activity. Sci Rep-Uk. 2017;7(1):13270. doi:10.1038/s41598-017-13774-6.
  • Sihag J, Marzo VD. (Wh)olistic (E)ndocannabinoidome-microbiome-axis modulation through (N)utrition (WHEN) to Curb Obesity and related disorders. Lipids Heal Dis. 2022;21(1):9. doi:10.1186/s12944-021-01609-3.
  • Cani PD, Plovier H, Hul MV, Geurts L, Delzenne NM, Druart C, Everard A. Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12(3):133–143. doi:10.1038/nrendo.2015.211.
  • Venema K, Verhoeven J, Beckman C, Keller D. Survival of a probiotic-containing product using capsule-within-capsule technology in an in vitro model of the stomach and small intestine (TIM-1). Benef Microbes. 2020;11(4):403–409. doi:10.3920/BM2019.0209.
  • Vandeputte D. Personalized nutrition through the gut microbiota: Current insights and future perspectives. Nutr Rev. 2020;78(Supplement_3):66–74. doi:10.1093/nutrit/nuaa098.
  • Kolodziejczyk AA, Zheng D, Elinav E. Diet–microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17(12):742–753. doi:10.1038/s41579-019-0256-8.
  • Park JC, Im SH. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp Mol Med. 2020;52(9):1383–1396. doi:10.1038/s12276-020-0473-2.
  • de Wiele TV, den Abbeele PV, Ossieur W, Possemiers S, Marzorati M. The Impact of Food Bioactives on health, in vitro and ex vivo models. 2015;305–317.
  • Ikeyama N, Murakami T, Toyoda A, Mori H, Iino T, Ohkuma M, Sakamoto M. Microbial interaction between the succinate‐utilizing bacterium phascolarctobacterium faecium and the gut commensal bacteroides thetaiotaomicron. Microbiologyopen. 2020;9(10):e1111. doi:10.1002/mbo3.1111.
  • Wang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, Wang Y, Liu C, Wang W, Wang J. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 2019;26(1):222–235.e5. doi:10.1016/j.celrep.2018.12.028.
  • Fernández-Veledo S, Vendrell J. Gut microbiota-derived succinate: friend or foe in human metabolic diseases? Rev Endocr Metabolic Disord. 2019;20(4):439–447. doi:10.1007/s11154-019-09513-z.
  • Tsukuda N, Yahagi K, Hara T, Watanabe Y, Matsumoto H, Mori H, Higashi K, Tsuji H, Matsumoto S, Kurokawa K. et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 2021;15(9):2574–2590. doi:10.1038/s41396-021-00937-7.
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi:10.1038/nature12820.
  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD. et al. Expert consensus document: the International Scientific Association for Probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi:10.1038/nrgastro.2017.75.
  • Marzo VD. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17(9):623–639. doi:10.1038/nrd.2018.115.
  • de Vos WM, Tilg H, Hul MV, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–1032. doi:10.1136/gutjnl-2021-326789.
  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. doi:10.1038/nature11550.
  • Hotea I, Sirbu C, Plotuna AM, Tîrziu E, Badea C, Berbecea A, Dragomirescu M, Radulov I. Integrating (nutri-)metabolomics into the one health tendency—the key for personalized medicine advancement. Metabolites. 2023;13(7):800. doi:10.3390/metabo13070800.
  • McCallum G, Tropini C. The gut microbiota and its biogeography. Nat Rev Microbiol. 2023;22(2):105–118. doi:10.1038/s41579-023-00969-0.
  • Lim RRX, Park MA, Wong LH, Haldar S, Lim KJ, Nagarajan N, Henry CJ, Jiang YR, Moskvin OV. Gut microbiome responses to dietary intervention with hypocholesterolemic vegetable oils. npj Biofilms Microbiomes. 2022;8(1):24. doi:10.1038/s41522-022-00287-y.
  • Li W, Li L, Yang F, Hu Q, Xiong D. Correlation between gut bacteria phascolarctobacterium and exogenous metabolite α-linolenic acid in T2DM: a case-control study. Ann Transl Med. 2022;10(19):1056–0. doi:10.21037/atm-22-3967.
  • Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK, MacDougall K, Preston T, Tedford C, Finlayson GS. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744. doi:10.1136/gutjnl-2014-307913.
  • O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2(5):17057. doi:10.1038/nmicrobiol.2017.57.
  • Brodmann T, Endo A, Gueimonde M, Vinderola G, Kneifel W, de Vos WM, Salminen S, Gómez-Gallego C. Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Front Microbiol. 2017;8:1725. doi:10.3389/fmicb.2017.01725.
  • Horvath TD, Ihekweazu FD, Haidacher SJ, Ruan W, Engevik KA, Fultz R, Hoch KM, Luna RA, Oezguen N, Spinler JK. et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. iScience. 2022;25(5):104158. doi:10.1016/j.isci.2022.104158.
  • Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022;19(10):625–637. doi:10.1038/s41575-022-00631-9.
  • Lessard-Lord J, Lupien-Meilleur J, Roussel C, Gosselin-Cliche B, Silvestri C, Marzo VD, Roy D, Rousseau E, Desjardins Y. Mathematical modeling of fluid dynamics in in vitro gut fermentation systems: a new tool to improve the interpretation of microbial metabolism. FASEB J. 2023;38(2). doi:10.1096/fj.202301739RR.
  • de Vogel-van den Bosch HM, Bünger M, de Groot PJ, Bosch-Vermeulen H, Hooiveld GJ, Müller M. Pparalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genom. 2008;9(1):231. doi:10.1186/1471-2164-9-231.
  • Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi M, Bork P, Bridge A, Colwell L. et al. InterPro in 2022. Nucleic Acids Res. 2022;51(D1):D418–27. doi:10.1093/nar/gkac993.
  • Merkel O, Schmid PC, Paltauf F, Schmid HHO. Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids. 2005;1734(3):215–219. doi:10.1016/j.bbalip.2005.03.004.
  • Ryan E, Joyce SA, Clarke DJ. Membrane lipids from gut microbiome-associated bacteria as structural and signalling molecules. Microbiology. 2023;169(3):micro001315. doi:10.1099/mic.0.001315.
  • Ryan E, Pastor BG, Gethings LA, Clarke DJ, Joyce SA. Lipidomic Analysis Reveals Differences in Bacteroides Species driven largely by Plasmalogens, glycerophosphoinositols and certain sphingolipids. Metabolites. 2023;13(3):360. doi:10.3390/metabo13030360.
  • Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross JR, Emiliano AB, Han SM. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017;549(7670):48–53. doi:10.1038/nature23874.
  • Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, de Vos WM, Ehrlich S, Fraser CM, Hattori M. et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8–16. doi:10.1038/s41564-017-0072-8.
  • Pérez-Burillo S, Molino S, Navajas-Porras B, Valverde-Moya ÁJ, Hinojosa-Nogueira D, López-Maldonado A, Pastoriza S, Rufián-Henares JÁ. An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nat Protoc. 2021;16(7):3186–3209. doi:10.1038/s41596-021-00537-x.
  • den Abbeele PV, Roos S, Eeckhaut V, MacKenzie DA, Derde M, Verstraete W, Marzorati M, Possemiers S, Vanhoecke B, Van Immerseel, F. et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol. 2012;5(1):106–115. doi:10.1111/j.1751-7915.2011.00308.x.
  • Roussel C, Galia W, Leriche F, Chalancon S, Denis S, de Wiele TV, Blanquet-Diot S. Comparison of conventional plating, PMA-qPCR, and flow cytometry for the determination of viable enterotoxigenic Escherichia coli along a gastrointestinal in vitro model. Appl Microbiol Biotechnol. 2018;102(22):9793–9802. doi:10.1007/s00253-018-9380-z.
  • Geirnaert A, Wang J, Tinck M, Steyaert A, den AP, Eeckhaut V, Vilchez-Vargas R, Falony G, Laukens D, De Vos M. et al. Interindividual differences in response to treatment with butyrate-producing Butyricicoccus pullicaecorum 25–3T studied in an in vitro gut model. FEMS Microbiol Ecol. 2015;91(6):fiv054. doi:10.1093/femsec/fiv054.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • (PDF) Vegan: Community Ecology Package. R package version 2.0-2 [internet]. [ accessed 2023 Apr 13]. https://www.researchgate.net/publication/282247686_Vegan_Community_Ecology_Package_R_package_version_20-2.
  • McMurdie PJ, Holmes S, McHardy AC. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10(4):e1003531. doi:10.1371/journal.pcbi.1003531.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Paepe KD, Verspreet J, Verbeke K, Raes J, Courtin CM, de WT. Introducing insoluble wheat bran as a gut microbiota niche in an in vitro dynamic gut model stimulates propionate and butyrate production and induces colon region specific shifts in the luminal and mucosal microbial community. Environ Microbiol. 2018;20(9):3406–3426. doi:10.1111/1462-2920.14381.
  • Ianiro G, Punčochář M, Karcher N, Porcari S, Armanini F, Asnicar F, Beghini F, Blanco-Míguez A, Cumbo F, Manghi P. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat Med. 2022;28(9):1913–1923. doi:10.1038/s41591-022-01964-3.
  • Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M. et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi:10.1038/nature09944.
  • Roussel C, Chabaud S, Lessard-Lord J, Cattero V, Pellerin FA, Feutry P, Bochard V, Bolduc S, Desjardins Y. UPEC colonic-virulence and urovirulence are blunted by proanthocyanidins-rich cranberry extract microbial metabolites in a gut Model and a 3D tissue-engineered urothelium. Microbiol Spectr. 2022;10(5):e02432–21. doi:10.1128/spectrum.02432-21.
  • Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, Houde A, Veilleux A, Flamand N, Muccioli GG. et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res. 2020;61(1):70–85. doi:10.1194/jlr.RA119000424.
  • Everard A, Plovier H, Rastelli M, Hul MV, de Wouters d’Oplinter A, Geurts L, Druart C, Robine S, Delzenne NM, Muccioli GG. et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat Commun. 2019;10(1):457. doi:10.1038/s41467-018-08051-7.