1,128
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Cognitive behavioral and mindfulness with daily exercise intervention is associated with changes in intestinal microbial taxa and systemic inflammation in patients with Crohn’s disease

ORCID Icon, ORCID Icon, , , , , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2337269 | Received 11 Dec 2022, Accepted 27 Mar 2024, Published online: 09 Apr 2024

References

  • Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A, Kaser A, Peyrin-Biroulet L, Danese S. Crohn’s disease. Nat Rev Dis Primers. 2020 Apr 04;6(1):22. doi:10.1038/s41572-020-0156-2.
  • Fatahi DA, Al Asmari AS, Bukhari GA, Alshamrani HA, Hunaydi KA, Sharahili AM, Alharshan TK, Alherz AA. Crohn’s disease: Pathophysiology and management. Egypt J Hosp Med. 2018;70(11):2004–15. doi:10.12816/0044858.
  • Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn’s disease. Dis Mon. 2018;64(2):20–57. doi:10.1016/j.disamonth.2017.07.001.
  • Petagna L, Antonelli A, Ganini C, Bellato V, Campanelli M, Divizia A, Efrati C, Franceschilli M, Guida AM, Ingallinella S. et al. Pathophysiology of Crohn’s disease inflammation and recurrence. Biol Direct. 2020;15(1):1–10. doi:10.1186/s13062-020-00280-5.
  • Leppkes M, Neurath M. Cytokines in inflammatory bowel diseases–Update 2020. Pharmacol Res. 2020;158:104835. doi:10.1016/j.phrs.2020.104835.
  • Bevivino G, Monteleone G. Advances in understanding the role of cytokines in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2018;12(9):907–915. doi:10.1080/17474124.2018.1503053.
  • Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–342. doi:10.1038/nri3661.
  • Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20(8):970–979. doi:10.1038/s41590-019-0415-0.
  • Huang Y, Chen Z. Inflammatory bowel disease related innate immunity and adaptive immunity. Am J Transl Res. 2016 Jul 12;8(6):2490–2497.
  • Velikova TV, Miteva L, Stanilov N, Spassova Z, Stanilova SA. Interleukin-6 compared to the other Th17/Treg related cytokines in inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2020;26(16):1912. doi:10.3748/wjg.v26.i16.1912.
  • Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm. 2017;2017:1–11. doi:10.1155/2017/3908061.
  • Hueber W. A human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–1700. doi:10.1136/gutjnl-2011-301668.
  • Makris AP, Karianaki M, Tsamis KI, Paschou SA. The role of the gut-brain axis in depression: Endocrine, neural, and immune pathways. Hormones. 2021;20(1):1–12. doi:10.1007/s42000-020-00236-4.
  • Nemirovsky A, Ilan K, Lerner L, Cohen-Lavi L, Schwartz D, Goren G, Sergienko R, Greenberg D, Slonim-Nevo V, Sarid O. et al. Brain-immune axis regulation is responsive to cognitive behavioral therapy and mindfulness intervention: Observations from a randomized controlled trial in patients with Crohn’s disease. Brain Behav Immun-Health. 2021;19:100407. doi:10.1016/j.bbih.2021.100407.
  • Schoultz IK, Keita ÅV. Cellular and molecular therapeutic targets in inflammatory bowel disease—focusing on intestinal barrier function. Cells. 2019;8(2):193. doi:10.3390/cells8020193.
  • Ballegeer M, Van Looveren K, Timmermans S, Eggermont M, Vandevyver S, Thery F, Dendoncker K, Souffriau J, Vandewalle J, Van Wyngene L. et al. Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. J Clin Invest. 2018 May 11;128(8):3265–3279. doi:10.1172/jci96636.
  • Aldars-García L, Chaparro M, Gisbert JP. Systematic review: The gut microbiome and its potential clinical application in inflammatory bowel disease. Microorganisms. 2021 May 06;9(5):977. doi:10.3390/microorganisms9050977.
  • Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn’s disease. Comp Immunol Microbiol Infect Dis. 2015;43:36–49. doi:10.1016/j.cimid.2015.10.005.
  • Schreiner P, Rossel JB, Biedermann L, Valko PO, Baumann CR, Greuter T, Scharl M, Vavricka SR, Pittet V, Juillerat P. et al. Fatigue in inflammatory bowel disease and its impact on daily activities. Aliment Pharmacol Ther. 2021;53(1):138–149. doi:10.1111/apt.16145.
  • Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. Recent advances in characterizing the gastrointestinal microbiome in Crohnʼs disease. Inflamm Bowel Dis. 2015;21:1219–1228. doi:10.1097/MIB.0000000000000382.
  • Gevers D, Kugathasan S, Knights D, Kostic AD, Knight R, Xavier RJ. A microbiome foundation for the study of Crohn’s disease. Cell Host & Microbe. 2017;21(3):301–304. doi:10.1016/j.chom.2017.02.012.
  • Wynne B, McHugh L, Gao W, Keegan D, Byrne K, Rowan C, Hartery K, Kirschbaum C, Doherty G, Cullen G. et al. Acceptance and commitment therapy reduces psychological stress in patients with inflammatory bowel diseases. Gastroenterology. 2019;156(4):935–945.e1. doi:10.1053/j.gastro.2018.11.030.
  • F.S. D. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16(5):300–317. doi:10.1159/000216188.
  • Reed RG, Raison CL. Stress and the immune system. Environ Influences Immune Syst. 2016;97–126. Springer.
  • Spencer RLD, Deak T. A users guide to HPA axis research. Physiol Behav. 2017;178:43–65. doi:10.1016/j.physbeh.2016.11.014.
  • Sylvia KE, Demas GE. A gut feeling: microbiome-brain-immune interactions modulate social and affective behaviors. Horm Behav. 2018;99:41–49. doi:10.1016/j.yhbeh.2018.02.001.
  • Shields GS, Spahr CM, Slavich GM. Psychosocial interventions and immune system function: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiarty. 2020;77(10):1031. doi:10.1001/jamapsychiatry.2020.0431.
  • Gracie DJ, Irvine AJ, Sood R, Mikocka-Walus A, Hamlin PJ, Ford AC. Effect of psychological therapy on disease activity, psychological comorbidity, and quality of life in inflammatory bowel disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2:189–199. doi:10.1016/S2468-1253(16)30206-0.
  • Mikocka-Walus A, Bampton P, Hetzel D, Hughes P, Esterman A, Andrews JM. Cognitive-behavioural therapy for inflammatory bowel disease: 24-month data from a randomised controlled trial. Int J Behav Med. 2017;24(1):127–135. doi:10.1007/s12529-016-9580-9.
  • Mikocka-Walus A, Bampton P, Hetzel D, Hughes P, Esterman A, Andrews JM. Cognitive-behavioural therapy has no effect on disease activity but improves quality of life in subgroups of patients with inflammatory bowel disease: a pilot randomised controlled trial. BMC Gastroenterol. 2015;15(1):54. doi:10.1186/s12876-015-0278-2.
  • Goren G, Schwartz D, Friger M, Banai H, Sergienko R, Regev S, Abu-Kaf H, Greenberg D, Nemirovsky A, Ilan K. et al. Randomized controlled trial of cognitive-behavioral and mindfulness-based stress reduction on the quality of life of patients with Crohn disease. Inflamm Bowel Dis. 2021 Apr 14;2021. doi:10.1093/ibd/izab083
  • Alam MT, Amos GCA, Murphy ARJ, Murch S, Wellington EMH, Arasaradnam RP. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathog. 2020;12(1):1. doi:10.1186/s13099-019-0341-6.
  • Zhang L, Liu F, Xue J, Lee SA, Liu L, Riordan SM. Bacterial species associated with human inflammatory bowel disease and their pathogenic mechanisms. Front Microbiol. 2022;13:801892. doi:10.3389/fmicb.2022.801892.
  • Buffet-Bataillon S, Bouguen G, Fleury F, Cattoir V, Le Cunff Y. Gut microbiota analysis for prediction of clinical relapse in Crohn’s disease. Sci Rep. 2022;12(1):19929. doi:10.1038/s41598-022-23757-x.
  • Horwat P, Kopeć S, Garczyk A, Kaliciak I, Staręga Z, Drogowski K, Mardas M, Stelmach-Mardas M. Influence of enteral nutrition on gut microbiota composition in patients with Crohn’s disease: a systematic review. Nutrients. 2020;12(9):2551. doi:10.3390/nu12092551.
  • Feng L, Zhou N, Li Z, Fu D, Guo Y, Gao X, Liu X. Co-occurrence of gut microbiota dysbiosis and bile acid metabolism alteration is associated with psychological disorders in Crohn’s disease. Faseb J. 2022;36(1):e22100. doi:10.1096/fj.202101088RRR.
  • Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev. 2012;70:S2–S9. doi:10.1111/j.1753-4887.2012.00489.x.
  • Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or Consequence? IBD treatment targeting the gut microbiome. Pathogens. 2019;8(3):126. doi:10.3390/pathogens8030126.
  • Mondot S, Kang S, Furet JP, Aguirre de Carcer D, McSweeney C, Morrison M, Marteau P, Doré J, Leclerc M. Highlighting new phylogenetic specificities of Crohnʼs disease microbiota. Inflamm Bowel Dis. 2010;17(1):185–192. doi:10.1002/ibd.21436.
  • Humbel F, Rieder JH, Franc Y, Juillerat P, Scharl M, Misselwitz B, Schreiner P, Begré S, Rogler G, von Känel R. et al. Association of alterations in intestinal microbiota with impaired psychological function in patients with inflammatory bowel diseases in remission. Clin Gastroenterol Hepatol. 2020;18(9):2019–2029.e11. doi:10.1016/j.cgh.2019.09.022.
  • Yang M, Gu Y, Li L, Liu T, Song X, Sun Y, Cao X, Wang B, Jiang K, Cao H. et al. Bile acid–gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients. 2021;13(9):3143. doi:10.3390/nu13093143.
  • Monteiro-Cardoso VF, Corlianò M, Singaraja RR. Bile acids: a communication channel in the gut-brain axis. Neuromolecular Med. 2021;23(1):99–117. doi:10.1007/s12017-020-08625-z.
  • Ni Dhonnabhain R, Xiao Q, O’Malley D. Aberrant gut-to-brain signaling in irritable bowel syndrome - the role of bile acids. Front Endocrinol. 2021;12:745190. doi:10.3389/fendo.2021.745190.
  • Tang Y, Zhao L, Lei N, Chen P, Zhang Y. Crohn’s disease patients with depression exhibit alterations in monocyte/macrophage phenotype and increased proinflammatory cytokine production. Dig Dis. 2020;38(3):211–221. doi:10.1159/000501122.
  • Eriguchi Y, Nakamura K, Yokoi Y, Sugimoto R, Takahashi S, Hashimoto D, Teshima T, Ayabe T, Selsted ME, Ouellette AJ. et al. Essential role of IFNγ in T cell–associated intestinal inflammation. JCI Insight. 2018;3(18):e121886. doi:10.1172/jci.insight.121886.
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9.
  • Mentella MC, Scaldaferri F, Pizzoferrato M, Gasbarrini A, Miggiano GAD. Nutrition, IBD and gut microbiota: A review. Nutrients. 2020 Apr 03;12(4):944. doi:10.3390/nu12040944.
  • Yanai H, Levine A, Hirsch A. et al. The Crohn’s disease exclusion diet for induction and maintenance of remission in adults with mild-to-moderate Crohn’s disease (CDED-AD): an open-label, pilot, randomised trial. Lancet Gastroenterol Hepatol. 2022;7:49–59. doi:10.1016/S2468-1253(21)00299-5.
  • Godny L, Reshef L, Sharar Fischler T, Elial-Fatal S, Pfeffer-Gik T, Raykhel B, Rabinowitz K, Levi-Barda A, Perets TT, Barkan R. et al. Increasing adherence to the Mediterranean diet and lifestyle is associated with reduced fecal calprotectin and intra-individual changes in microbial composition of healthy subjects. Gut Microbes. 2022;14(1):2120749. doi:10.1080/19490976.2022.2120749.
  • Oka P, Parr H, Barberio B. et al. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5:908–917. doi:10.1016/S2468-1253(20)30217-X.
  • Regev S, Schwartz D, Sarid O, Goren G, Slonim‐Nevo V, Friger M, Sergienko R, Greenberg D, Monsonego A, Nemirovsky A. et al. Randomised clinical trial: Psychological intervention improves work productivity and daily activity by reducing abdominal pain and fatigue in Crohn’s disease. Aliment Pharmacol Ther. 2023;57(8):861–871. doi:10.1111/apt.17399.
  • Al’absi M. Stress and addiction: When a robust stress response indicates resiliency. Psychosom Med. 2018;80(1):2. doi:10.1097/PSY.0000000000000520.
  • Richens JL, Urbanowicz RA, Metcalf R, Corne J, O’Shea P, Fairclough L. Quantitative validation and comparison of multiplex cytokine kits. J Biomol Screen. 2010;15(5):562–568. doi:10.1177/1087057110362099.
  • Breen EC, Reynolds SM, Cox C, Jacobson LP, Magpantay L, Mulder CB, Dibben O, Margolick JB, Bream JH, Sambrano E. et al. Multisite comparison of high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol. 2011;18(8):1229–1242. doi:10.1128/CVI.05032-11.
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. 2012;6(8):1621–1624. doi:10.1038/ismej.2012.8.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Price MN, Dehal PS, Arkin AP, Poon AFY. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PloS One. 2010;5(3):e9490. doi:10.1371/journal.pone.0009490.
  • Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi:10.1093/molbev/mst010.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41(D1):D590–D596. doi:10.1093/nar/gks1219.
  • Bokulich NA, Kaehler BD, Rideout JR. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90. doi:10.1186/s40168-018-0470-z.
  • https://www.R-project.org/.
  • Liu C, Li X, Mansoldo FRP, An J, Kou Y, Zhang X, Wang J, Zeng J, Vermelho AB, Yao M. et al. Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma. 2022;418:115866. doi:10.1016/j.geoderma.2022.115866.
  • Liu C, Cui Y, Li X, Yao M. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol. 2020;97(2). doi:10.1093/femsec/fiaa255.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60.
  • Lahti L, Salonen A, Kekkonen RA, Salojärvi J, Jalanka-Tuovinen J, Palva A, Orešič M, de Vos W. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ. 2013;1:e32. doi:10.7717/peerj.32.
  • Villanueva RAM, Chen ZJ. ggplot2: Elegant graphics for data analysis (2nd ed.). Meas: Interdiscip Res Perspect. 2019;17(3):160–167. doi:10.1080/15366367.2019.1565254.
  • Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG. Using graph theory to analyze biological networks. BioData Min. 2011;4(1):1–27. doi:10.1186/1756-0381-4-10.