802
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

A high fiber diet or supplementation with Lactococcus lactis subspecies cremoris to pregnant mice confers protection against intestinal injury in adult offspring

ORCID Icon, , , , &
Article: 2337317 | Received 07 Jul 2023, Accepted 27 Mar 2024, Published online: 15 Apr 2024

References

  • Salam RA, Das JK, Bhutta ZA. Impact of intrauterine growth restriction on long-term health. Curr Opin Clin Nutr Metab Care. 2014;17(3):249–8. doi:10.1097/MCO.0000000000000051.
  • Mirpuri J. Evidence for maternal diet-mediated effects on the offspring microbiome and immunity: implications for public health initiatives. Pediatr Res. 2021;89(2):301–306. doi:10.1038/s41390-020-01121-x.
  • Babu ST, Niu X, Raetz M, Savani RC, Hooper LV, Mirpuri J. Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight. 2018;3(19):3. doi:10.1172/jci.insight.99223.
  • Lu P, Yamaguchi Y, Fulton WB, Wang S, Zhou Q, Jia H, Kovler ML, Salazar AG, Sampah M, Prindle T. et al. Maternal aryl hydrocarbon receptor activation protects newborns against necrotizing enterocolitis. Nat Commun. 2021;12(1):1042. doi:10.1038/s41467-021-21356-4.
  • Sausenthaler S, Koletzko S, Schaaf B, Lehmann I, Borte M, Herbarth O, von Berg A, Wichmann H-E, Heinrich J. Maternal diet during pregnancy in relation to eczema and allergic sensitization in the offspring at2 y of age. Am J Clin Nutr. 2007;85(2):530–537. doi:10.1093/ajcn/85.2.530.
  • Calvani M, Alessandri C, Sopo SM, Panetta V, Pingitore G, Tripodi S, Zappalà D, Zicari AM. Consumption of fish, butter and margarine during pregnancy and development of allergic sensitizations in the offspring: role of maternal atopy. Pediatr Allergy Immunol. 2006;17(2):94–102. doi:10.1111/j.1399-3038.2005.00367.x.
  • Romieu I, Torrent M, Garcia-Esteban R, Ferrer C, Ribas-Fito N, Anto JM, Sunyer J. Maternal fish intake during pregnancy and atopy and asthma in infancy. Clin Exp Allergy. 2007;37(4):518–525. doi:10.1111/j.1365-2222.2007.02685.x.
  • Miyake Y, Sasaki S, Tanaka K, Ohfuji S, Hirota Y. Maternal fat consumption during pregnancy and risk of wheeze and eczema in Japanese infants aged 16–24 months: the Osaka maternal and child health study. Thorax. 2009;64(9):815–821. doi:10.1136/thx.2009.115931.
  • Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M, Aagaard KM. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77. doi:10.1186/s13073-016-0330-z.
  • Barbian ME, Owens JA, Naudin CR, Denning PW, Patel RM, Jones RM. Butyrate supplementation to pregnant mice elicits cytoprotection against colonic injury in the offspring. Pediatr Res. 2022;92(1):125–134. doi:10.1038/s41390-021-01767-1.
  • Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012;95(1):50–60. doi:10.5740/jaoacint.SGE_Macfarlane.
  • Goncalves P, Araujo JR, Di Santo JP. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(3):558–572. doi:10.1093/ibd/izx029.
  • Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14(10):667–685. doi:10.1038/nri3738.
  • Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13–22. doi:10.1017/S0029665114001463.
  • Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. doi:10.1080/19490976.2015.1134082.
  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme a (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol. 2002;68(10):5186–5190. doi:10.1128/AEM.68.10.5186-5190.2002.
  • Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM. et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity. 2018;49(6):1116–31 e7. doi:10.1016/j.immuni.2018.10.013.
  • Song AA, LLA I, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact. 2017;16(1):55. doi:10.1186/s12934-017-0669-x.
  • Naudin CR, Maner-Smith K, Owens JA, Wynn GM, Robinson BS, Matthews JD, Reedy AR, Luo L, Wolfarth AA, Darby TM. et al. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a Western-Style Diet. Gastroenterology. 2020;159(2):639–51 e5. doi:10.1053/j.gastro.2020.03.010.
  • Darby TM, Owens JA, Saeedi BJ, Luo L, Matthews JD, Robinson BS, Naudin CR, Jones RM. Lactococcus Lactis subsp. cremoris is an efficacious beneficial bacterium that limits tissue injury in the intestine. iScience. 2019;12:356–367. doi:10.1016/j.isci.2019.01.030.
  • Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, Neurath MF. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12(7):1295–1309. doi:10.1038/nprot.2017.044.
  • Zhang L, Zhang Y, Zhong W, Di C, Lin X, Xia Z. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance. J Biol Chem. 2014;289(39):26847–26858. doi:10.1074/jbc.M114.590554.
  • Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y. et al. Protective effect of Naringin on DSS-Induced ulcerative colitis in mice. J Agric Food Chem. 2018;66(50):13133–13140. doi:10.1021/acs.jafc.8b03942.
  • Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kühl AA. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7:4557–4576.