963
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Christensenella strain resources, genomic/metabolomic profiling, and association with host at species level

, , , , , , , , , , , ORCID Icon & ORCID Icon show all
Article: 2347725 | Received 03 Jan 2024, Accepted 22 Apr 2024, Published online: 09 May 2024

References

  • Chen Z, Radjabzadeh D, Chen L, Kurilshikov A, Kavousi M, Ahmadizar F, Ikram MA, Uitterlinden AG, Zhernakova A, Fu J. et al. Association of insulin resistance and type 2 diabetes with gut microbial diversity: a microbiome-wide analysis from population studies. JAMA Netw Open. 2021;4(7):e2118811. doi:10.1001/jamanetworkopen.2021.18811.
  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell J. et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–20. doi:10.1016/j.cell.2014.09.053.
  • Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V, Simon MC, Kiilerich P, Akrami R, Krämer M, Uhlén M. et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe. 2021;29(5):765–76.e3. doi:10.1016/j.chom.2021.02.021.
  • Li X, Li Z, He Y, Li P, Zhou H, Zeng N. Regional distribution of Christensenellaceae and its associations with metabolic syndrome based on a population-level analysis. PeerJ. 2020;8:e9591. doi:10.7717/peerj.9591.
  • Alcazar M, Escribano J, Ferré N, Closa-Monasterolo R, Selma-Royo M, Feliu A, Castillejo G, Luque V, Closa-Monasterolo R, Escribano J. et al. Gut microbiota is associated with metabolic health in children with obesity. Clin Nutr. 2022;41(8):1680–1688. doi:10.1016/j.clnu.2022.06.007.
  • Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov. sp. nov. isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol. 2012;62(1):144–149. doi:10.1099/ijs.0.026989-0.
  • Mazier W, Le Corf K, Martinez C, Tudela H, Kissi D, Kropp C, Coubard C, Soto M, Elustondo F, Rawadi G. et al. A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases. Cells. 2021;10(4):10. doi:10.3390/cells10040823.
  • Liu C, Du MX, Xie LS, Wang WZ, Chen BS, Yun CY, Sun X-W, Luo X, Jiang Y, Wang K. et al. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat Microbiol. 2024;9(2):434–450. doi:10.1038/s41564-023-01570-0.
  • Jiang Y, Du M-X, Xie L-S, Jiang M-Z, Zhang Y-K, Bi M-X, Liu C, Liu H, Liu S. The human-derived novel gut commensal Luoshenia tenuis regulates body weight and food intake in mice. Food Sci Hum Wellness. 2023;13(2):830–841. doi:10.26599/FSHW.2022.9250071.
  • Ang WS, Law JW, Letchumanan V, Hong KW, Wong SH, Ab Mutalib NS, Chan K-G, Lee L-H, Tan LTH. A Keystone gut bacterium Christensenella minuta—A potential biotherapeutic agent for obesity and associated metabolic diseases. Foods (Basel, Switzerland). 2023;12(13):12. doi:10.3390/foods12132485.
  • Lau SK, McNabb A, Woo GK, Hoang L, Fung AM, Chung LM, Woo PCY, Yuen K-Y. Catabacter hongkongensis gen. nov. sp. nov. isolated from blood cultures of patients from Hong Kong and Canada. J Clin Microbiol. 2007;45(2):395–401. doi:10.1128/JCM.01831-06.
  • Lau SK, Fan RY, Lo HW, Ng RH, Wong SS, Li IW, Wu AKL, Ng KHL, Tseung S, Lee RA. et al. High mortality associated with catabacter hongkongensis bacteremia. J Clin Microbiol. 2012;50(7):2239–2243. doi:10.1128/JCM.00128-12.
  • Elsendoorn A, Robert R, Culos A, Roblot F, Burucoa C. Catabacter hongkongensis bacteremia with fatal septic shock. Emerg Infect Dis. 2011;17(7):1330–1331. doi:10.3201/eid1707.101773.
  • Atzeni A, Nishi SK, Babio N, Belzer C, Konstanti P, Vioque J, Corella D, Castañer O, Vidal J, Moreno-Indias I. et al. Carbohydrate quality, fecal microbiota and cardiometabolic health in older adults: a cohort study. Gut Microbes. 2023;15(2):2246185. doi:10.1080/19490976.2023.2246185.
  • Tian H, Cui J, Ye C, Zhao J, Yang B, Xu Y, Ji S, Wang L, Lv X, Ma C. et al. Depletion of butyrate-producing microbes of the firmicutes predicts nonresponse to FMT therapy in patients with recurrent clostridium difficile infection. Gut Microbes. 2023;15(1):2236362. doi:10.1080/19490976.2023.2236362.
  • Tavella T, Rampelli S, Guidarelli G, Bazzocchi A, Gasperini C, Pujos-Guillot E, Comte B, Barone M, Biagi E, Candela M. et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes. 2021;13(1):1–19. doi:10.1080/19490976.2021.1880221.
  • Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, Prifti E, Aron-Wisnewsky J, Debédat J, Le Roy T. et al. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut. 2022;71(12):2463–2480. doi:10.1136/gutjnl-2021-325753.
  • Brauer-Nikonow A, Zimmermann M. How the gut microbiota helps keep us vitaminized. Cell Host Microbe. 2022;30(8):1063–1066. doi:10.1016/j.chom.2022.07.010.
  • Das P, Babaei P, Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics. 2019;20(1):208. doi:10.1186/s12864-019-5591-7.
  • Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol. 2022;20(9):542–556. doi:10.1038/s41579-022-00712-1.
  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5. doi:10.1093/nar/gkt1178.
  • Wu H, Owen CD, Juge N, Czjzek M, Ficko-Blean E, Berrin J-G. Structure and function of microbial α-l-fucosidases: a mini review. Essays Biochem. 2023;67(3):399–414. doi:10.1042/EBC20220158.
  • Owen CD, Tailford LE, Monaco S, Šuligoj T, Vaux L, Lallement R, Khedri Z, Yu H, Lecointe K, Walshaw J. et al. Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat Commun. 2017;8(1):2196. doi:10.1038/s41467-017-02109-8.
  • Li D, Fei T, Wang Y, Zhao Y, Dai L, Fu X, Li X. A cold-active 1,4-α-glucan branching enzyme from Bifidobacterium longum reduces the retrogradation and enhances the slow digestibility of wheat starch. Food Chem. 2020;324:126855. doi:10.1016/j.foodchem.2020.126855.
  • Lopes AP, de Oliveira Castelo Branco RR, de Alcântara Oliveira FA, Campos MAS, de Carvalho Sousa B, Agostinho ÍR, Gonzalez AGM, Rocha JA, Pinheiro REE, Araújo AR. et al. Antimicrobial, modulatory, and antibiofilm activity of tt-farnesol on bacterial and fungal strains of importance to human health. Bioorg Med Chem Lett. 2021;47:128192. doi:10.1016/j.bmcl.2021.128192.
  • Araújo Delmondes G, Pereira Lopes MJ, Araújo IM, de Sousa Borges A, Batista PR, Melo Coutinho HD, de Sousa Borges A, Alencar de Menezes IR, Barbosa-Filho JM, Bezerra Felipe CF. et al. Possible mechanisms involved in the neuroprotective effect of Trans,trans-farnesol on pilocarpine-induced seizures in mice. Chem Biol Interact. 2022;365:110059. doi:10.1016/j.cbi.2022.110059.
  • Cheng W, Yang J, Nie Q, Huang D, Yu C, Zheng L, Cai M, Thomashow LS, Weller DM, Yu Z. et al. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control meloidogyne incognita by multiple strategies. Sci Rep. 2017;7(1):16213. doi:10.1038/s41598-017-16631-8.
  • Kropp C, Le Corf K, Relizani K, Tambosco K, Martinez C, Chain F, Rawadi G, Langella P, Claus SP, Martin R. et al. The keystone commensal bacterium Christensenella minuta DSM 22607 displays anti-inflammatory properties both in vitro and in vivo. Sci Rep. 2021;11(1):11494. doi:10.1038/s41598-021-90885-1.
  • Hong Y, Sheng L, Zhong J, Tao X, Zhu W, Ma J, Yan J, Zhao A, Zheng X, Wu G. et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes. 2021;13(1):1–20. doi:10.1080/19490976.2021.1930874.
  • Pu W, Zhang H, Zhang T, Guo X, Wang X, Tang S. Inhibitory effects of Clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice. Front Immunol. 2023;14:1004756. doi:10.3389/fimmu.2023.1004756.
  • Concha E, Heipieper HJ, Wick LY, Ciudad GA, Navia R. Effects of limonene, n-decane and n-decanol on growth and membrane fatty acid composition of the microalga Botryococcus braunii. AMB Express. 2018;8(1):189. doi:10.1186/s13568-018-0718-9.
  • Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans. J Basic Microbiol. 2009;49(6):579–583. doi:10.1002/jobm.200900035.
  • Zhang X, Zhang P, Liu Y, Liu Z, Xu Q, Zhang Y, Liu L, Yang X, Li L, Xue C. et al. Effects of caprylic acid and eicosapentaenoic acid on lipids, inflammatory levels, and the JAK2/STAT3 pathway in ABCA1-deficient mice and ABCA1 knock-down RAW264.7 cells. Nutrients. 2023;15(5):15. doi:10.3390/nu15051296.
  • Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021;61(6):557–568. doi:10.1002/jobm.202100061.
  • Gou H, Su H, Liu D, Wong CC, Shang H, Fang Y, Zeng X, Chen H, Li Y, Huang Z. et al. Traditional medicine Pien Tze Huang suppresses colorectal tumorigenesis through restoring gut microbiota and metabolites. Gastroenterology. 2023;165(6):1404–1419. doi:10.1053/j.gastro.2023.08.052.
  • Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, Massey WJ, Varadharajan V, Horak A, Banerjee R. et al. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell. 2023;186(13):2839–52.e21. doi:10.1016/j.cell.2023.05.037.
  • Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, Zheng D, Cheung KCP, Liao B, Wang S. et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 2023;35(10):1752–1766.e8. doi:10.1016/j.cmet.2023.07.011.
  • Chaudhari SN, Luo JN, Harris DA, Aliakbarian H, Yao L, Paik D, Subramaniam R, Adhikari AA, Vernon AH, Kiliç A. et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe. 2021;29(3):408–24.e7. doi:10.1016/j.chom.2020.12.004.
  • Redzej A, Ukleja M, Connery S, Trokter M, Felisberto-Rodrigues C, Cryar A, Thalassinos K, Hayward RD, Orlova EV, Waksman G. et al. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. Embo J. 2017;36(20):3080–3095. doi:10.15252/embj.201796629.
  • Gunn JS. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2000;2(8):907–913. doi:10.1016/S1286-4579(00)00392-0.
  • Déjean G, Tudela H, Bruno L, Kissi D, Rawadi G, Claus SP. Identifying a Novel Bile Salt Hydrolase from the Keystone gut bacterium Christensenella minuta. Microorganisms. 2021;9(6):1252. doi:10.3390/microorganisms9061252.
  • Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–235. doi:10.1016/j.cmet.2013.01.003.
  • Owen JR, Noyes N, Young AE, Prince DJ, Blanchard PC, Lehenbauer TW, Aly SS, Davis JH, O’Rourke SM, Abdo Z. et al. Whole-genome sequencing and concordance between antimicrobial susceptibility genotypes and phenotypes of bacterial isolates associated with bovine respiratory disease. G3 (Bethesda, Md). 2017;7(9):3059–3071. doi:10.1534/g3.117.1137.
  • Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–d25. doi:10.1093/nar/gkz935.
  • Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. doi:10.1186/s12915-019-0699-4.
  • Liu C, Du MX, Abuduaini R, Yu HY, Li DH, Wang YJ, Zhou N, Jiang M-Z, Niu P-X, Han S-S. et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome. 2021;9(1):119. doi:10.1186/s40168-021-01064-3.
  • Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533(7604):543–546. doi:10.1038/nature17645.
  • Yang Y, Gu H, Sun Q, Wang J. Effects of Christensenella minuta lipopolysaccharide on RAW 264.7 macrophages activation. Microb Pathog. 2018;125:411–417. doi:10.1016/j.micpath.2018.10.005.
  • Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY. Specific properties of probiotic strains: relevance and benefits for the host. Epma J. 2018;9(2):205–223. doi:10.1007/s13167-018-0132-z.
  • Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol. 2015;6:58. doi:10.3389/fmicb.2015.00058.
  • Kim WS, Cho CS, Hong L, Han GG, Kil BJ, Kang SK, Kim D-D, Choi Y-J, Huh C-S. Oral delivery of probiotics using pH-sensitive phthalyl inulin tablets. J Microbiol Biotechnol. 2019;29(2):200–208. doi:10.4014/jmb.1811.11021.
  • Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, Kim E, Franzosa EA, Avila-Pacheco J, Bisanz JE. et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature. 2022;603(7903):907–912. doi:10.1038/s41586-022-04480-z.
  • Sun H, Guo Y, Wang H, Yin A, Hu J, Yuan T, Zhou S, Xu W, Wei P, Yin S. et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis. Gut. 2023;72(9):1664–1677. doi:10.1136/gutjnl-2022-327756.
  • Liu C, Zhou N, Du MX, Sun YT, Wang K, Wang YJ, Li D-H, Yu H-Y, Song Y, Bai B-B. et al. The mouse gut microbial biobank expands the coverage of cultured bacteria. Nat Commun. 2020;11(1):79. doi:10.1038/s41467-019-13836-5.
  • Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64(Pt_2):346–351. doi:10.1099/ijs.0.059774-0.
  • Macfarlane GT, Macfarlane S. Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol. 2007;18(2):156–162. doi:10.1016/j.copbio.2007.01.011.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura KMX, Battistuzzi FU. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi:10.1093/molbev/msy096.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425. doi:10.1093/oxfordjournals.molbev.a040454.
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–120. doi:10.1007/BF01731581.
  • Zuo G. Cvtree: a parallel alignment-free phylogeny and taxonomy tool based on composition vectors of genomes. Genomics, Proteomics & Bioinf. 2021;19(4):662–667. doi:10.1016/j.gpb.2021.03.006.
  • Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66(2):1100–1103. doi:10.1099/ijsem.0.000760.
  • Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50(D1):D801–d7. doi:10.1093/nar/gkab902.
  • Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, Bresciani A, Martínez I, Just S, Ziegler C. et al. The mouse intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1(10):16131. doi:10.1038/nmicrobiol.2016.131.
  • Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang Y-Z. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol. 2014;196(12):2210–2215. doi:10.1128/JB.01688-14.
  • Sun XW, Abdugheni R, Huang HJ, Wang YJ, Jiang MZ, Liu C, Zhou N, Jiang H, Liu S-J. Bacteroides propionicigenes sp. nov. isolated from human faeces. Int J Syst Evol Microbiol. 2022;72(5). doi:10.1099/ijsem.0.005397.
  • Zou Y, Xue W, Lin X, Hu T, Liu SW, Sun CH, Luo G, Lv M, Dai Y, Kristiansen K. et al. Taxonomic description and genome sequence of Christensenella intestinihominis sp. nov. a novel cholesterol-lowering bacterium isolated from human gut. Front Microbiol. 2021;12:632361. doi:10.3389/fmicb.2021.632361.
  • Rosa BA, Hallsworth-Pepin K, Martin J, Wollam A, Mitreva M. Genome Sequence of Christensenella minuta DSM 22607T. Genome Announc. 2017;5(2). doi:10.1128/genomeA.01451-16.
  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics (Oxford, England). 2019;36(6):1925–1927. doi:10.1093/bioinformatics/btz848.
  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–1534. doi:10.1093/molbev/msaa015.
  • Jain C, Rodriguez LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):5114. doi:10.1038/s41467-018-07641-9.
  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 2010;11(1):119. doi:10.1186/1471-2105-11-119.
  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen L. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47(D1):D309–d14. doi:10.1093/nar/gky1085.
  • Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–d92. doi:10.1093/nar/gkac963.
  • Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin EV. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2021;49(D1):D274–d81. doi:10.1093/nar/gkaa1018.
  • Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50(D1):D912–d7. doi:10.1093/nar/gkab1107.
  • Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics (Oxford, England). 2015;31(22):3691–3693. doi:10.1093/bioinformatics/btv421.
  • Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6(1):24373. doi:10.1038/srep24373.
  • Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402. doi:10.1186/1471-2164-12-402.
  • Dai D, Zhu J, Sun C, Li M, Liu J, Wu S, Ning K, He L-J, Zhao X-M, Chen W-H. et al. Gmrepo v2: a curated human gut microbiome database with special focus on disease markers and cross-dataset comparison. Nucleic Acids Res. 2022;50(D1):D777–d84. doi:10.1093/nar/gkab1019.
  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257. doi:10.1186/s13059-019-1891-0.
  • Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104. doi:10.7717/peerj-cs.104.
  • Abdugheni R, Wang W-Z, Wang Y-J, Du M-X, Liu F-L, Zhou N, Jiang C-Y, Wang C-Y, Wu L, Ma J. et al. Metabolite profiling of human-originated lachnospiraceae at the strain level. iMeta. 2022;1(4):e58. doi:10.1002/imt2.58.
  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics: Off J Metabolomic Soc. 2007;3(3):211–221. doi:10.1007/s11306-007-0082-2.