515
Views
0
CrossRef citations to date
0
Altmetric
Review

Ecological insights into hematopoiesis regulation: unraveling the influence of gut microbiota

ORCID Icon, &
Article: 2350784 | Received 04 Jan 2024, Accepted 29 Apr 2024, Published online: 10 May 2024

References

  • Collins A, Mitchell CA, Passegué E. Inflammatory signaling regulates hematopoietic stem and progenitor cell development and homeostasis. J Exp Med. 2021;218(7). doi:10.1084/jem.20201545.
  • Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18(Suppl 4):2–23. doi:10.1111/j.1469-0691.2012.03916.x.
  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–1267. doi:10.1126/science.1223813.
  • Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Develop. 1999;126(22):5073–5084. doi:10.1242/dev.126.22.5073.
  • Yokota T, Huang J, Tavian M, Nagai Y, Hirose J, Züñiga-Pflücker J-C, Péault B, Kincade PW. Tracing the first waves of lymphopoiesis in mice. Develop. 2006;133(10):2041–2051. doi:10.1242/dev.02349.
  • Kobayashi M, Wei H, Yamanashi T, Azevedo Portilho N, Cornelius S, Valiente N, Nishida C, Cheng H, Latorre A, Zheng WJ. et al. HSC-independent definitive hematopoiesis persists into adult life. Cell Rep. 2023;42(3):112239. doi:10.1016/j.celrep.2023.112239.
  • Iturri L, Freyer L, Biton A, Dardenne P, Lallemand Y, Gomez Perdiguero E. Megakaryocyte production is sustained by direct differentiation from erythromyeloid progenitors in the yolk sac until midgestation. Immunity. 2021;54(7):1433–1446.e5. doi:10.1016/j.immuni.2021.04.026.
  • Palis J. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 2016;590(22):3965–3974. doi:10.1002/1873-3468.12459.
  • Choi K, Kennedy M, Kazarov A. A common precursor for hematopoietic and endothelial cells. Development. 1998;125(4):725–732. doi:10.1242/dev.125.4.725.
  • Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008;9(2):129–136. doi:10.1038/ni1560.
  • Wu Y, Hirschi KK. Regulation of hemogenic endothelial cell development and function. Annu Rev Physiol. 2021;83(1):17–37. doi:10.1146/annurev-physiol-021119-034352.
  • Canu G, Ruhrberg C. First blood: the endothelial origins of hematopoietic progenitors. Angiogen. 2021;24(2):199–211. doi:10.1007/s10456-021-09783-9.
  • Samarakkody AS, Cantor AB. Opening the window for endothelial-to-hematopoietic transition. Genes Dev. 2021;35(21–22):1398–1400. doi:10.1101/gad.349056.121.
  • Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 2010;464(7285):112–115. doi:10.1038/nature08761.
  • Ruiz-Herguido C, Guiu J, D’Altri T, Inglés-Esteve J, Dzierzak E, Espinosa L, Bigas A. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J Exp Med. 2012;209(8):1457–1468. doi:10.1084/jem.20120225.
  • Gao X, Xu C, Asada N, Frenette PS. The hematopoietic stem cell niche: from embryo to adult. Develop. 2018;145(2). doi:10.1242/dev.139691.
  • Patel SH, Christodoulou C, Weinreb C, Yu Q, da Rocha EL, Pepe-Mooney BJ, Bowling S, Li L, Osorio FG, Daley GQ. et al. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature. 2022;606(7915):747–753. doi:10.1038/s41586-022-04804-z.
  • Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.
  • Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–846. doi:10.1038/nature02040.
  • Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–462. doi:10.1038/nature10783.
  • Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp H-G, Shido K, Petit I, Yanger K. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell. 2009;4(3):263–274. doi:10.1016/j.stem.2009.01.006.
  • Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6(3):251–264. doi:10.1016/j.stem.2010.02.001.
  • Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–336. doi:10.1016/j.cell.2007.08.025.
  • Cordeiro Gomes A, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T, Tani-Ichi S, Schlenner S, Richie E, Rodewald H-R. et al. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity. 2016;45(6):1219–1231. doi:10.1016/j.immuni.2016.11.004.
  • Yu L, Tu Q, Han Q, Zhang L, Sui L, Zheng L, Meng S, Tang Y, Xuan D, Zhang J. et al. Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells. 2015;33:240–252. doi:10.1002/stem.1844.
  • Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–263. doi:10.1038/nature08099.
  • Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S, Mensà E, Pascarella R, Vivarelli M, Olivieri A. et al. Bone marrow adipocytes support hematopoietic stem cell survival. J Cellular Physiol. 2018;233(2):1500–1511. doi:10.1002/jcp.26037.
  • Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, Morrison SJ. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19(8):891–903. doi:10.1038/ncb3570.
  • Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi:10.1038/nature09262.
  • Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity. 2018;48(4):632–648. doi:10.1016/j.immuni.2018.03.024.
  • Himburg HA, Termini CM, Schlussel L, Kan J, Li M, Zhao L, Fang T, Sasine JP, Chang VY, Chute JP. et al. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell. 2018;23(3):370–381.e5. doi:10.1016/j.stem.2018.07.003.
  • Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin Receptor+ niche cells in the bone marrow. Cell Stem Cell. 2019;24(3):477–486.e6. doi:10.1016/j.stem.2018.11.022.
  • Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–643. doi:10.1038/nature12612.
  • Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177–2195. doi:10.1007/s00018-018-2794-z.
  • Sakamoto T, Obara N, Nishikii H, Kato T, Cao-Sy L, Fujimura R, Yagita H, Sakata-Yanagimoto M, Takahashi S, Chiba S. Notch signaling in Nestin-Expressing cells in the bone marrow maintains erythropoiesis via macrophage integrity. Stem Cells. 2019;37(7):924–936. doi:10.1002/stem.3011.
  • Xie L, Zeng X, Hu J, Chen Q. Characterization of nestin, a selective marker for bone marrow derived mesenchymal stem cells. Stem Cells Int. 2015;2015:1–9. doi:10.1155/2015/762098.
  • Isern J, Méndez-Ferrer S. Stem cell interactions in a bone marrow niche. Curr Osteoporos Rep. 2011;9(4):210–218. doi:10.1007/s11914-011-0075-y.
  • Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, Frenette PS. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exper Med. 2013;210(7):1351–1367. doi:10.1084/jem.20122252.
  • Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez N, Birbrair A, Ma’ayan A, Frenette P. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol. 2017;19(3):214–223. doi:10.1038/ncb3475.
  • Gerosa RC, Boettcher S, Kovtonyuk LV, Hausmann A, Hardt W-D, Hidalgo J, Nombela-Arrieta C, Manz MG. CXCL12-abundant reticular cells are the major source of IL-6 upon LPS stimulation and thereby regulate hematopoiesis. Blood Adv. 2021;5(23):5002–5015. doi:10.1182/bloodadvances.2021005531.
  • Galán-Díez M, Kousteni S. A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 2018;32(5–6):324–326. doi:10.1101/gad.314013.118.
  • Zhang J, Niu C, Ye L, Huang H, He X, Tong W-G, Ross J, Haug J, Johnson T, Feng JQ. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–841. doi:10.1038/nature02041.
  • Zhao M, Tao F, Venkatraman A, Li Z, Smith SE, Unruh J, Chen S, Ward C, Qian P, Perry JM. et al. N-Cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells. Cell Rep. 2019;26(3):652–669.e6. doi:10.1016/j.celrep.2018.12.093.
  • Yu Z, Yang W, He X, Chen C, Li W, Zhao L, Liu L, Liu J, Xie L, Zhang Y. et al. Endothelial cell-derived angiopoietin-like protein 2 supports hematopoietic stem cell activities in bone marrow niches. Blood. 2022;139(10):1529–1540. doi:10.1182/blood.2021011644.
  • Reddy K, Zhou Z, Schadler K, Jia SF, Kleinerman ES. Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing’s tumor vessels. Molecular Cancer Res. 2008;6(6):929–936. doi:10.1158/1541-7786.Mcr-07-2189.
  • Perlin JR, Sporrij A, Zon LI. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med (Berl). 2017;95(8):809–819. doi:10.1007/s00109-017-1559-8.
  • Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–334. doi:10.1038/nature12984.
  • Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Experiment Med. 2005;201(11):1781–1791. doi:10.1084/jem.20041992.
  • Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immun. 2006;25(6):977–988. doi:10.1016/j.immuni.2006.10.016.
  • Zhu RJ, Wu MQ, Li ZJ, Zhang Y, Liu KY. Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis. Int J Hematol. 2013;97(1):58–72. doi:10.1007/s12185-012-1233-4.
  • Stone AP, Nascimento TF, Barrachina MN. The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis. Blood. 2022;139(4):483–491. doi:10.1182/blood.2021012827.
  • Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, Ahamed J, Li L. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–1326. doi:10.1038/nm.3706.
  • Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–1320. doi:10.1038/nm.3707.
  • Pinho S, Marchand T, Yang E, Wei Q, Nerlov C, Frenette PS. Lineage-Biased hematopoietic stem cells are regulated by distinct niches. Dev Cell. 2018;44(5):634–641.e4. doi:10.1016/j.devcel.2018.01.016.
  • Cunin P, Bouslama R, Machlus KR, Martínez-Bonet M, Lee PY, Wactor A, Nelson-Maney N, Morris A, Guo L, Weyrich A. et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife. 2019;8. doi:10.7554/eLife.44031.
  • Li Z, Mariani S, Rodriguez-Seoane C, He W, Ning X, Liu B, Vink CS, Dzierzak EA. A role for macrophages in hematopoiesis in the embryonic head. Blood. 2019;134:1929–1940. doi:10.1182/blood.2018881243.
  • Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, Garbe AI. Foxp3(+) regulatory T cells in bone and hematopoietic homeostasis. Front Endocrinol (Lausanne). 2019;10:578. doi:10.3389/fendo.2019.00578.
  • Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, Robson SC, Frenette PS, Fujisaki J. CD150(high) bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via Adenosine. Cell Stem Cell. 2018;22(3):445–453.e445. doi:10.1016/j.stem.2018.01.017.
  • Yamazaki S, Nakauchi H. Bone marrow Schwann cells induce hematopoietic stem cell hibernation. Int J Hematol. 2014;99(6):695–698. doi:10.1007/s12185-014-1588-9.
  • Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo M, Karlsson S, Iwama A, Nakauchi H. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147(5):1146–1158. doi:10.1016/j.cell.2011.09.053.
  • Park MH, Jin HK, Min W-K, Lee WW, Lee JE, Akiyama H, Herzog H, Enikolopov GN, Schuchman EH, Bae J-S. et al. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. Embo J. 2015;34(12):1648–1660. doi:10.15252/embj.201490174.
  • Asada N, Katayama Y, Sato M, Minagawa K, Wakahashi K, Kawano H, Kawano Y, Sada A, Ikeda K, Matsui T. et al. Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell. 2013;12(6):737–747. doi:10.1016/j.stem.2013.05.001.
  • Ahmed N, Ghannoum M, Gallogly M, de Lima M, Malek E. Influence of gut microbiome on multiple myeloma: friend or foe? J Immunother Cancer. 2020;8(1):e000576. doi:10.1136/jitc-2020-000576.
  • Wang T, Ye Y, Ji J, Yang X, Xu J, Wang J-S, Han X, Zhang T, Sun X. Diet composition affects long-term zearalenone exposure on the gut–blood–liver axis metabolic dysfunction in mice. Ecotoxicol Environ Saf. 2022;236:113466. doi:10.1016/j.ecoenv.2022.113466.
  • Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–166. doi:10.1038/nm.3444.
  • Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, Burk RD, Kunisaki Y, Jang J-E, Scheiermann C. et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525(7570):528–532. doi:10.1038/nature15367.
  • Lee S, Kim H, You G, Kim Y-M, Lee S, Le V-H, Kwon O, Im S-H, Kim Y-M, Kim KS. et al. Bone marrow CX3CR1+ mononuclear cells relay a systemic microbiota signal to control hematopoietic progenitors in mice. Blood. 2019;134(16):1312–1322. doi:10.1182/blood.2019000495.
  • Josefsdottir KS, Baldridge MT, Kadmon CS, King KY. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood. 2017;129(6):729–739. doi:10.1182/blood-2016-03-708594.
  • McCoy KD, Thomson CA. The impact of maternal microbes and microbial colonization in early life on hematopoiesis. J Immunol. 2018;200(8):2519–2526. doi:10.4049/jimmunol.1701776.
  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–521. doi:10.1542/peds.2005-2824.
  • Arancibia SA, Beltrán CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA. Toll-like receptors are key participants in innate immune responses. Biol Res. 2007;40(2):97–112. doi:10.4067/S0716-97602007000200001.
  • Chen JQ, Szodoray P, Zeher M. Toll-like receptor pathways in autoimmune diseases. Clinic Rev Allerg Immunol. 2016;50(1):1–17. doi:10.1007/s12016-015-8473-z.
  • von Ossowski I, Pietilä TE, Rintahaka J, Nummenmaa E, Mäkinen V-M, Reunanen J, Satokari R, de Vos WM, Palva I, Palva A. et al. Using recombinant Lactococci as an approach to dissect the immunomodulating capacity of surface piliation in probiotic lactobacillus rhamnosus GG. PLoS One. 2013;8(5):e64416. doi:10.1371/journal.pone.0064416.
  • Kolypetri P, Weiner HL. Monocyte regulation by gut microbial signals. Trends Microbiol. 2023;31(10):1044–1057. doi:10.1016/j.tim.2023.05.006.
  • Sioud M, Fløisand Y, Forfang L, Lund-Johansen F. Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol. 2006;364(5):945–954. doi:10.1016/j.jmb.2006.09.054.
  • MegíMegíAs J, Yáñez A, Moriano S, O’Connor J-E, Gozalbo D, Gil M-L. Direct toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells. 2012;30(7):1486–1495. doi:10.1002/stem.1110.
  • Sioud M. Microbial sensing by haematopoietic stem and progenitor cells: vigilance against infections and immune education of myeloid cells. Scand J Immunol. 2020;92(5):e12957. doi:10.1111/sji.12957.
  • De Luca K, Frances-Duvert V, Asensio M-J, Ihsani R, Debien E, Taillardet M, Verhoeyen E, Bella C, Lantheaume S, Genestier L. et al. The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia. 2009;23(11):2063–2074. doi:10.1038/leu.2009.155.
  • Wang X, Cheng Q, Li L, Wang J, Xia L, Xu X, Sun Z. Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34+ cells. Exp Cell Res. 2012;318(3):196–206. doi:10.1016/j.yexcr.2011.11.001.
  • Ziegler P, Boettcher S, Takizawa H, Manz MG, Brümmendorf TH. LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Ann Hematol. 2016;95(2):173–178. doi:10.1007/s00277-015-2550-5.
  • Khosravi A, Yáñez A, Price J, Chow A, Merad M, Goodridge H, Mazmanian S. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host & Microbe. 2014;15(3):374–381. doi:10.1016/j.chom.2014.02.006.
  • Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, Cuenca M, Kovtonyuk LV, McCoy KD, Hapfelmeier S, Ochsenbein AF. et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol. 2014;193(10):5273–5283. doi:10.4049/jimmunol.1400762.
  • Zhang P, Nelson S, Bagby GJ, Siggins R, Shellito JE, Welsh DA. The Lineage−c-Kit+Sca-1+ cell response to Escherichia coli bacteremia in Balb/c mice. Stem Cells. 2008;26(7):1778–1786. doi:10.1634/stemcells.2007-1027.
  • Czernik PJ, Golonka RM, Chakraborty S, Yeoh BS, Abokor AA, Saha P, Yeo J-Y, Mell B, Cheng X, Baroi S. et al. Reconstitution of the host holobiont in germ-free born male rats acutely increases bone growth and affects marrow cellular content. Physiol Genomic. 2021;53(12):518–533. doi:10.1152/physiolgenomics.00017.2021.
  • Dürholz K, Schmid E, Frech M, Azizov V, Otterbein N, Lucas S, Rauh M, Schett G, Bruns H, Zaiss MM. et al. Microbiota-derived propionate modulates megakaryopoiesis and platelet function. Front Immunol. 2022;13:908174. doi:10.3389/fimmu.2022.908174.
  • Young K, Borikar S, Bell R, Kuffler L, Philip V, Trowbridge JJ. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging. J Experiment Med. 2016;213(11):2259–2267. doi:10.1084/jem.20160168.
  • Krambs JR, Monlish DA, Gao F, Schuettpelz LG, Link DC. Microbiota signals suppress B lymphopoiesis with aging in mice. Front Immunol. 2021;12:767267. doi:10.3389/fimmu.2021.767267.
  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–118. doi:10.1016/j.cell.2005.05.007.
  • Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C, Christy MA, Begum-Haque S, Kasper DL, Kasper LH. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39 + Foxp3 + T cells and T reg function. Gut Microbes. 2015;6(4):234–242. doi:10.1080/19490976.2015.1056973.
  • Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–12209. doi:10.1073/pnas.0909122107.
  • Gul L, Modos D, Fonseca S, Madgwick M, Thomas JP, Sudhakar P, Booth C, Stentz R, Carding SR, Korcsmaros T. et al. Extracellular vesicles produced by the human commensal gut bacterium bacteroides thetaiotaomicron affect host immune pathways in a cell-type specific manner that are altered in inflammatory bowel disease. J Extracell Vesicles. 2022;11(1):e12189. doi:10.1002/jev2.12189.
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi:10.1016/j.cell.2014.03.011.
  • Gray J, Oehrle K, Worthen G, Alenghat T, Whitsett J, Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med. 2017;9(376). doi:10.1126/scitranslmed.aaf9412.
  • Andrlova H, Miltiadous O, Dai A, Gardner R, El Daker S, Slingerland JB, Giardina PA, Clurman A, Gomes ALC, Nguyen CL. et al. MAIT and Vδ2 unconventional T cells predict favorable outcome after allogeneic HCT and are supported by a diverse intestinal microbiome. Blood. 2021;138(Supplement 1):331–331. doi:10.1182/blood-2021-151412.
  • Michaudel C, Sokol H. The gut microbiota at the service of immunometabolism. Cell Metab. 2020;32(4):514–523. doi:10.1016/j.cmet.2020.09.004.
  • Brown EM, Kenny DJ, Xavier RJ. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu Rev Immunol. 2019;37(1):599–624. doi:10.1146/annurev-immunol-042718-041841.
  • Kim M, Galan C, Hill AA, Wu W-J, Fehlner-Peach H, Song HW, Schady D, Bettini ML, Simpson KW, Longman RS. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immun. 2018;49(1):151–163.e5. doi:10.1016/j.immuni.2018.05.009.
  • Mittrucker HW, Seidel D, Bland PW, Zarzycka A, Kaufmann SHE, Visekruna A, Steinhoff U. Lack of microbiota reduces innate responses and enhances adaptive immunity against listeria monocytogenes infection. Eur J Immunol. 2014;44(6):1710–1715. doi:10.1002/eji.201343927.
  • Goldszmid RS, Dzutsev A, Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host & Microbe. 2014;15(3):295–305. doi:10.1016/j.chom.2014.02.003.
  • Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A, Hill DR, Ma X, Lamberg O, Schnizlein MK. et al. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metabol. 2020;31(1):115–130.e6. doi:10.1016/j.cmet.2019.10.005.
  • Zhang D, Gao X, Li H, Borger DK, Wei Q, Yang E, Xu C, Pinho S, Frenette PS. The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell. 2022;29(2):232–247.e7. doi:10.1016/j.stem.2021.12.009.
  • Cao Y, Liu B, Li W, Geng F, Gao X, Yue L, Liu H, Liu C, Su Z, Lü J. et al. Protopanaxadiol manipulates gut microbiota to promote bone marrow hematopoiesis and enhance immunity in cyclophosphamide-induced immunosuppression mice. MedComm. 2023;4(2):e222. doi:10.1002/mco2.222.
  • Staffas A, Burgos da Silva M, van den Brink MR. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood. 2017;129(8):927–933. doi:10.1182/blood-2016-09-691394.
  • Gavriilaki M, Sakellari I, Anagnostopoulos A, Gavriilaki E. The impact of antibiotic-mediated modification of the intestinal microbiome on outcomes of allogeneic hematopoietic cell transplantation: systematic review and meta-analysis. Biol Blood Marrow Transplant. 2020;26(9):1738–1746. doi:10.1016/j.bbmt.2020.05.011.
  • Payen M, Nicolis I, Robin M, Michonneau D, Delannoye J, Mayeur C, Kapel N, Berçot B, Butel M-J, Le Goff J. et al. Functional and phylogenetic alterations in gut microbiome are linked to graft-versus-host disease severity. Blood Adv. 2020;4(9):1824–1832. doi:10.1182/bloodadvances.2020001531.
  • Khan N, Lindner S, Gomes ALC, Devlin SM, Shah GL, Sung AD, Sauter CS, Landau HJ, Dahi PB, Perales M-A. et al. Fecal microbiota diversity disruption and clinical outcomes after auto-HCT: a multicenter observational study. Blood. 2021;137(11):1527–1537. doi:10.1182/blood.2020006923.
  • Ingham AC, Kielsen K, Cilieborg MS, Lund O, Holmes S, Aarestrup FM, Müller KG, Pamp SJ. Specific gut microbiome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation. Microbiome. 2019;7(1):131. doi:10.1186/s40168-019-0745-z.
  • Miltiadous O, Waters NR, Andrlová H, Dai A, Nguyen CL, Burgos da Silva M, Lindner S, Slingerland J, Giardina P, Clurman A. et al. Early intestinal microbial features are associated with CD4 T-cell recovery after allogeneic hematopoietic transplant. Blood. 2022;139(18):2758–2769. doi:10.1182/blood.2021014255.
  • Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, Niehus R, Staffas A, Dai A, Fontana E. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature. 2020;588(7837):303–307. doi:10.1038/s41586-020-2971-8.
  • Luo Y, Chen G-L, Hannemann N, Ipseiz N, Krönke G, Bäuerle T, Munos L, Wirtz S, Schett G, Bozec A. et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 2015;22(5):886–894. doi:10.1016/j.cmet.2015.08.020.
  • Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol. 2006;6(1):9–20. doi:10.1038/nri1747.
  • Kufer TA, Banks DJ, Philpott DJ. Innate immune sensing of microbes by nod proteins. Ann N Y Acad Sci. 2006;1072(1):19–27. doi:10.1196/annals.1326.020.
  • Iwamura C, Bouladoux N, Belkaid Y, Sher A, Jankovic D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood. 2017;129(2):171–176. doi:10.1182/blood-2016-06-723742.
  • Lee YS, Kim T-Y, Kim Y, Kim S, Lee S-H, Seo S-U, Zhou BO, Eunju O, Kim KS, Kweon M-N. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Exp Mol Med. 2021;53(9):1319–1331. doi:10.1038/s12276-021-00667-y.
  • Porcari S, Benech N, Valles-Colomer M, Segata N, Gasbarrini A, Cammarota G, Sokol H, Ianiro G. Key determinants of success in fecal microbiota transplantation: from microbiome to clinic. Cell Host & Microbe. 2023;31(5):712–733. doi:10.1016/j.chom.2023.03.020.
  • Nivet C, Duhalde V, Beaurain M, Delobel P, Quelven I, Alric L. Fecal microbiota transplantation for refractory clostridioides difficile infection is effective and well tolerated even in very old subjects: a real-life study. J Nutrition Health Aging. 2022;26(3):290–296. doi:10.1007/s12603-022-1756-1.
  • Zeng X, Li X, Li X, Wei C, Shi C, Hu K, Kong D, Luo Q, Xu Y, Shan W. et al. Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood. 2023;141(14):1691–1707. doi:10.1182/blood.2022017514.
  • Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X. et al. Randomized double-blind phase II trial of fecal microbiota transplantation versus placebo in allogeneic hematopoietic cell transplantation and AML. J Clin Oncol. 2023;2202366(34):5306–5319. doi:10.1200/JCO.22.02366.
  • van Lier YF, Vos J, Blom B, Hazenberg MD. Allogeneic hematopoietic cell transplantation, the microbiome, and graft-versus-host disease. Gut Microbes. 2023;15(1):2178805. doi:10.1080/19490976.2023.2178805.
  • Staffas A, Burgos da Silva M, Slingerland AE, Lazrak A, Bare CJ, Holman CD, Docampo MD, Shono Y, Durham B, Pickard AJ. et al. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. Cell Host Microbe. 2018;23(4):447–457.e4. doi:10.1016/j.chom.2018.03.002.
  • Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer. 2018;18(5):283–295. doi:10.1038/nrc.2018.10.
  • Vaitkute G, Panic G, Alber DG, Faizura-Yeop I, Cloutman-Green E, Swann J, Veys P, Standing JF, Klein N, Bajaj-Elliott M. et al. Linking gastrointestinal microbiota and metabolome dynamics to clinical outcomes in paediatric haematopoietic stem cell transplantation. Microbiome. 2022;10(1). doi:10.1186/s40168-022-01270-7.
  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S. et al. Expert consensus document. The International scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. doi:10.1038/nrgastro.2014.66.
  • Espín-Palazón R, Stachura D, Campbell C, García-Moreno D, Del Cid N, Kim A, Candel S, Meseguer J, Mulero V, Traver D. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell. 2014;159(5):1070–1085. doi:10.1016/j.cell.2014.10.031.
  • Kim PG, Canver MC, Rhee C, Ross SJ, Harriss JV, Tu H-C, Orkin SH, Tucker HO, Daley GQ. Interferon-α signaling promotes embryonic HSC maturation. Blood. 2016;128(2):204–216. doi:10.1182/blood-2016-01-689281.
  • Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon–dependent exhaustion. Nat Med. 2009;15(6):696–700. doi:10.1038/nm.1973.
  • Yamashita M, Passegué E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell. 2019;25(3):357–372.e7. doi:10.1016/j.stem.2019.05.019.
  • Rezzoug F, Huang Y, Tanner MK, Wysoczynski M, Schanie CL, Chilton PM, Ratajczak MZ, Fugier-Vivier IJ, Ildstad ST. TNF-α is critical to facilitate hemopoietic stem cell engraftment and function. J Immunol. 2008;180(1):49–57. doi:10.4049/jimmunol.180.1.49.
  • Bowers E, Slaughter A, Frenette PS, Kuick R, Pello OM, Lucas D. Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nat Med. 2018;24(1):95–102. doi:10.1038/nm.4448.
  • Bousounis P, Bergo V, Trompouki E. Inflammation, aging and Hematopoiesis: a complex relationship. Cells. 2021;10(6):1386. doi:10.3390/cells10061386.
  • Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE. Tumor necrosis factor (TNF)–mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood. 2001;98(6):1782–1791. doi:10.1182/blood.V98.6.1782.
  • Senyuk V, Patel P, Mahmud N, Rondelli D. Blockade of TNFα to improve human CD34+ cell repopulating activity in allogeneic stem cell transplantation. Front Immunol. 2018;9:3186. doi:10.3389/fimmu.2018.03186.
  • Deshmukh HS, Liu Y, Menkiti OR, Mei J, Dai N, O’Leary CE, Oliver PM, Kolls JK, Weiser JN, Worthen GS. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med. 2014;20(5):524–530. doi:10.1038/nm.3542.
  • Coillard A, Guyonnet L, De Juan A, Cros A, Segura E. TLR or NOD receptor signaling skews monocyte fate decision via distinct mechanisms driven by mTOR and miR-155. Proc Natl Acad Sci USA. 2021;118(43). doi:10.1073/pnas.2109225118.
  • Postler TS, Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 2017;26(1):110–130. doi:10.1016/j.cmet.2017.05.008.
  • Hu J, Lin S, Zheng B, Cheung PCK. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 2018;58(8):1243–1249. doi:10.1080/10408398.2016.1245650.
  • Bach Knudsen KE, Lærke H, Hedemann M, Nielsen T, Ingerslev A, Gundelund Nielsen D, Theil P, Purup S, Hald S, Schioldan A. et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients. 2018;10(10):1499. doi:10.3390/nu10101499.
  • Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–858. doi:10.1038/nm.4345.
  • Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F, Vogt L, Peters MJL, Muller M, Nieuwdorp M. et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. European Heart J. 2020;41(44):4259–4267. doi:10.1093/eurheartj/ehaa704.
  • Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, Tsvetkov D, Krannich A, Wundersitz S, Avery EG. et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulat. 2019;139(11):1407–1421. doi:10.1161/CIRCULATIONAHA.118.036652.
  • Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 2021;12(1):4077. doi:10.1038/s41467-021-24331-1.
  • Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–455. doi:10.1038/nature12726.
  • Ikuta T, Kan YW, Swerdlow PS, Faller DV, Perrine SP. Alterations in protein-DNA interactions in the γ-Globin gene promoter in response to butyrate therapy. Blood. 1998;92(8):2924–2933. doi:10.1182/blood.V92.8.2924.
  • Pace BS, White GL, Dover GJ, Boosalis MS, Faller DV, Perrine SP. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood. 2002;100(13):4640–4648. doi:10.1182/blood-2002-02-0353.
  • Bhatia H, Hallock JL, Dutta A, Karkashon S, Sterner LS, Miyazaki T, Dean A, Little JA. Short-chain fatty acid–mediated effects on erythropoiesis in primary definitive erythroid cells. Blood. 2009;113(25):6440–6448. doi:10.1182/blood-2008-09-171728.
  • Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, Ubags N, Fajas L, Nicod LP, Marsland BJ. et al. Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immun. 2018;48(5):992–1005 e1008. doi:10.1016/j.immuni.2018.04.022.
  • Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, Sim D, Jarr K, Spear ET, Singh G. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe. 2020;27(4):659–670.e5. doi:10.1016/j.chom.2020.01.021.
  • Thompson B, Lu S, Revilla J, Uddin MJ, Oakland DN, Brovero S, Keles S, Bresnick EH, Petri WA, Burgess SL. et al. Secondary bile acids function through the vitamin D receptor in myeloid progenitors to promote myelopoiesis. Blood Adv. 2023;7(17):4970–4982. doi:10.1182/bloodadvances.2022009618.
  • Sigurdsson V, Takei H, Soboleva S, Radulovic V, Galeev R, Siva K, Leeb-Lundberg LM, Iida T, Nittono H, Miharada K. Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell. 2016;18(4):522–532. doi:10.1016/j.stem.2016.01.002.