1,935
Views
0
CrossRef citations to date
0
Altmetric
Review

Diet-microbiota associations in gastrointestinal research: a systematic review

ORCID Icon, , , , &
Article: 2350785 | Received 04 Dec 2023, Accepted 29 Apr 2024, Published online: 09 May 2024

References

  • Eetemadi A, Rai N, Pereira BMP, Kim M, Schmitz H, Tagkopoulos I. The computational diet: a review of computational methods across diet, microbiome, and health. Front Microbiol. 2020;11:393. doi:10.3389/fmicb.2020.00393.
  • Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Current opinion in gastroenterology. Curr Opin Gastroenterol. 2015;31(1):69. doi:10.1097/MOG.0000000000000139.
  • Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH. et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):1–26. doi:10.1186/s12967-017-1175-y.
  • Rollo ME, Williams RL, Burrows T, Kirkpatrick SI, Bucher T, Collins CE. What are they really eating? A review on new approaches to dietary intake assessment and validation. Curr Nutr Rep. 2016;5(4):307–314. doi:10.1007/s13668-016-0182-6.
  • Leeming ER, Louca P, Gibson R, Menni C, Spector TD, Le Roy CI. The complexities of the diet-microbiome relationship: advances and perspectives. Genome Med. 2021;13(1):1–14. doi:10.1186/s13073-020-00813-7.
  • Shanahan ER, McMaster JJ, Staudacher HM. Conducting research on diet–microbiome interactions: a review of current challenges, essential methodological principles, and recommendations for best practice in study design. J Hum Nutr Diet. 2021;34(4):631–644. doi:10.1111/jhn.12868.
  • Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018;154(2):220–229. doi:10.1111/imm.12930.
  • Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J, Rappaport SM, van der Hooft JJ, Wishart DS. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99(6):1286–1308. doi:10.3945/ajcn.113.076133.
  • LeVatte M, Keshteli AH, Zarei P, Wishart DS. Applications of metabolomics to precision nutrition. Lifestyle Genomics. 2022;15(1):1–9. doi:10.1159/000518489.
  • Jardon KM, Canfora EE, Goossens GH, Blaak EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut. 2022;71(6):1214–1226. doi:10.1136/gutjnl-2020-323715.
  • Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12(1):1–11. doi:10.1186/s13073-020-00742-5.
  • Shah A, Talley NJ, Koloski N, Macdonald GA, Kendall BJ, Shanahan ER, Walker MM, Keely S, Jones MP, Morrison M. et al. Duodenal bacterial load as determined by quantitative polymerase chain reaction in asymptomatic controls, functional gastrointestinal disorders and inflammatory bowel disease. Aliment Pharmacol Ther. 2020;52(1):155–167. doi:10.1111/apt.15786.
  • Gibiino G, De Siena M, Sbrancia M, Binda C, Sambri V, Gasbarrini A, Fabbri C. Dietary habits and gut microbiota in healthy adults: focusing on the right diet. A systematic review. Int J Mol Sci. 2021;22(13):6728. doi:10.3390/ijms22136728.
  • Frame LA, Costa E, Jackson SA. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutr Rev. 2020;78(10):798–812. doi:10.1093/nutrit/nuz106.
  • Jefferson A, Adolphus K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: a systematic review. Front Nutr. 2019;6:33. doi:10.3389/fnut.2019.00033.
  • Vandeputte D, Joossens M. Effects of low and high FODMAP diets on human gastrointestinal microbiota composition in adults with intestinal diseases: a systematic review. Microorganisms. 2020;8(11):1638. doi:10.3390/microorganisms8111638.
  • Williams GM, Tapsell LC, O’Brien CL, Tosh SM, Barrett EM, Beck EJ. Gut microbiome responses to dietary intake of grain-based fibers with the potential to modulate markers of metabolic disease: a systematic literature review. Nutr Rev. 2021;79(11):1274–1292. doi:10.1093/nutrit/nuaa128.
  • Wolters M, Ahrens J, Romaní-Pérez M, Watkins C, Sanz Y, Benítez-Páez A, Stanton C, Günther K. Dietary fat, the gut microbiota, and metabolic health–A systematic review conducted within the MyNewGut project. Clin Nutr. 2019;38(6):2504–2520. doi:10.1016/j.clnu.2018.12.024.
  • Healey GR, Murphy R, Brough L, Butts CA, Coad J. Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews. 2017;75(12):1059–1080. doi:10.1093/nutrit/nux062.
  • Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A guide to diet-microbiome study design. Front Nutr. 2020;7:79. doi:10.3389/fnut.2020.00079.
  • Shang Q. From correlation to causation: the missing point in the study of functional foods and gut microbiota. J Funct Foods. 2019;61:103466. doi:10.1016/j.jff.2019.103466.
  • Losno EA, Sieferle K, Perez-Cueto FJA, Ritz C. Vegan diet and the gut microbiota composition in healthy adults. Nutrients. 2021;13(7):2402. doi:10.3390/nu13072402.
  • Trefflich I, Jabakhanji A, Menzel J, Blaut M, Michalsen A, Lampen A, Abraham K, Weikert C. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Crit Rev Food Sci Nutr. 2020;60(17):2990–3004. doi:10.1080/10408398.2019.1676697.
  • Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, Griffiths A, Malcomson FC, Joel A, Houghton D. et al. Effects of a Mediterranean diet on the gut microbiota and microbial metabolites: a systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr. 2022;63:1–22.
  • So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT, Shanahan ER, Staudacher HM, Campbell KL. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr. 2018;107(6):965–983. doi:10.1093/ajcn/nqy041.
  • Le Bastard Q, Chapelet G, Javaudin F, Lepelletier D, Batard E, Montassier E. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. Eur J Clin Microbiol Infect Dis. 2020;39(3):403–413. doi:10.1007/s10096-019-03721-w.
  • Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, Franco OH, Glisic M, Muka T. Dietary factors and modulation of bacteria strains of akkermansia muciniphila and faecalibacterium prausnitzii: a systematic review. Nutrients. 2019;11(7):1565. doi:10.3390/nu11071565.
  • Tangestani H, Emamat H, Ghalandari H, Shab-Bidar S. Whole grains, dietary fibers and the human gut microbiota: a systematic review of existing literature. Recent Pat Food, Nutr & Agric. 2020;11(3):235–248. doi:10.2174/2212798411666200316152252.
  • Valido E, Stoyanov J, Bertolo A, Hertig-Godeschalk A, Zeh RM, Flueck JL, Minder B, Stojic S, Metzger B, Bussler W. et al. Systematic review of the effects of oat intake on gastrointestinal health. J Nutr. 2021;151(10):3075–3090. doi:10.1093/jn/nxab245.
  • Su H, Li Y-T, Heitkemper MM, Zia J. Effects of low-FODMAPS diet on irritable bowel syndrome symptoms and gut microbiome. Gastroenterol Nurs. 2019;42(2):150–158. doi:10.1097/SGA.0000000000000428.
  • Albracht-Schulte K, Islam T, Johnson P, Moustaid-Moussa N. Systematic review of beef protein effects on gut microbiota: implications for health. Adv Nutr. 2021;12(1):102–114. doi:10.1093/advances/nmaa085.
  • Chander AM, Yadav H, Jain S, Bhadada SK, Dhawan DK. Cross-talk between gluten, intestinal microbiota and intestinal mucosa in celiac disease: recent advances and basis of autoimmunity. Front Microbiol. 2018;9:2597. doi:10.3389/fmicb.2018.02597.
  • Guetterman HM, Huey SL, Knight R, Fox AM, Mehta S, Finkelstein JL. Vitamin B-12 and the gastrointestinal microbiome: a systematic review. Adv Nutr. 2022;13(2):530–558. doi:10.1093/advances/nmab123.
  • Waterhouse M, Hope B, Krause L, Morrison M, Protani MM, Zakrzewski M, Neale RE. Vitamin D and the gut microbiome: a systematic review of in vivo studies. Eur J Nutr. 2019;58(7):2895–2910. doi:10.1007/s00394-018-1842-7.
  • Bellerba F, Muzio V, Gnagnarella P, Facciotti F, Chiocca S, Bossi P, Cortinovis D, Chiaradonna F, Serrano D, Raimondi S. et al. The association between Vitamin D and gut microbiota: a systematic review of human studies. Nutrients. 2021;13(10):3378. doi:10.3390/nu13103378.
  • Moorthy M, Chaiyakunapruk N, Jacob SA, Palanisamy UD. Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: a systematic review of randomised controlled trials. Trends Food Sci & Technol. 2020;99:634–649. doi:10.1016/j.tifs.2020.03.036.
  • Khairudin MAS, Mhd Jalil AM, Hussin N. Effects of polyphenols in tea (Camellia sinensis sp.) on the modulation of gut microbiota in human trials and animal studies. Gastroenterol Insights. 2021;12(2):202–216. doi:10.3390/gastroent12020018.
  • Abiega-Franyutti P, Freyre-Fonseca V. Chronic consumption of food-additives lead to changes via microbiota gut-brain axis. Toxicology. 2021;464:153001. doi:10.1016/j.tox.2021.153001.
  • Almutairi R, Basson AR, Wearsh P, Cominelli F, Rodriguez-Palacios A. Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. Eur J Nutr. 2022;61(6):1–19. doi:10.1007/s00394-022-02802-5.
  • Comas-Basté O, Sánchez-Pérez S, Veciana-Nogués MT, Latorre-Moratalla M, Vidal-Carou MDC. Histamine intolerance: the current state of the art. Biomolecules. 2020;10(8):1181. doi:10.3390/biom10081181.
  • Hrubisko M, Danis R, Huorka M, Wawruch M. Histamine intolerance—the more we know the less we know. A review. Nutrients. 2021;13(7):2228. doi:10.3390/nu13072228.
  • Mora-Flores LP, Moreno-Terrazas Casildo RMT, Fuentes-Cabrera J, Pérez-Vicente HA, de Anda-Jáuregui G, Neri-Torres EE. The role of carbohydrate intake on the gut microbiome: a weight of evidence systematic review. Microorganisms. 2023;11(7):1728. doi:10.3390/microorganisms11071728.
  • Lane M, Howland G, West M, Hockey M, Marx W, Loughman A, O’Hely M, Jacka F, Rocks T. The effect of ultra-processed very low-energy diets on gut microbiota and metabolic outcomes in individuals with obesity: a systematic literature review. Obesity Res & Clin Pract. 2020;14(3):197–204. doi:10.1016/j.orcp.2020.04.006.
  • Myhrstad MC, Tunsjø H, Charnock C, Telle-Hansen VH. Dietary fiber, gut microbiota, and metabolic regulation—Current status in human randomized trials. Nutrients. 2020;12(3):859. doi:10.3390/nu12030859.
  • So D, Loughman A, Staudacher H. Effects of a low FODMAP diet on the colonic microbiome in irritable bowel syndrome: a systematic review with meta-analysis. Am J Clin Nutr. 2022;116(4):943–952. Early online. doi: 10.1093/ajcn/nqac176.
  • Dai Z-L, Wu G, Zhu W-Y. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci. 2011;16(1):1768–1786. doi:10.2741/3820.
  • Creedon AC, Hung ES, Berry SE, Whelan K. Nuts and their effect on gut microbiota, gut function and symptoms in adults: a systematic review and meta-analysis of randomised controlled trials. Nutrients. 2020;12(8):2347. doi:10.3390/nu12082347.
  • Fitzgerald E, Lambert K, Stanford J, Neale EP. The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: a systematic review. Br J Nutr. 2021;125(5):508–520. doi:10.1017/S0007114520002925.
  • Costa MADC, Vilela DL, Fraiz GM, Lopes IL, Coelho AI, Castro LC, Martin JG. Effect of kombucha intake on the gut microbiota and obesity-related comorbidities: a systematic review. Crit Rev Food Sci Nutr. 2021;63:1–16.
  • Peled S, Livney YD. The role of dietary proteins and carbohydrates in gut microbiome composition and activity: a review. Food Hydrocoll. 2021;120:106911. doi:10.1016/j.foodhyd.2021.106911.
  • Ma N, Ma X. Dietary amino acids and the gut‐microbiome‐immune axis: physiological metabolism and therapeutic prospects. Compr Rev Food Sci Food Saf. 2019;18(1):221–242. doi:10.1111/1541-4337.12401.
  • Arias N, Arboleya S, Allison J, Kaliszewska A, Higarza SG, Gueimonde M, Arias JL. The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients. 2020;12(8):2340. doi:10.3390/nu12082340.
  • De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N, Siragusa S, Rampelli S, Di Cagno R, Rantsiou K, Vannini L. et al. Diet influences the functions of the human intestinal microbiome. Sci Rep. 2020;10(1):4247. doi:10.1038/s41598-020-61192-y.
  • Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, Leeming E, Gibson R, Le Roy C, Khatib HA. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(2):321–332. doi:10.1038/s41591-020-01183-8.
  • Stanford J, Charlton K, Stefoska-Needham A, Zheng H, Bird L, Borst A, Fuller A, Lambert K. Associations among plant-based diet quality, uremic toxins, and gut microbiota profile in adults undergoing hemodialysis therapy. J Renal Nutr. 2021;31(2):177–188. doi:10.1053/j.jrn.2020.07.008.
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–14696. doi:10.1073/pnas.1005963107.
  • Haro C, Montes-Borrego M, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, Quintana-Navarro GM, Tinahones FJ, Landa BB. et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocr Metab. 2016;101(1):233–242. doi:10.1210/jc.2015-3351.
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi:10.1038/nature12820.
  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73(4):1073–1078. doi:10.1128/AEM.02340-06.
  • Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8(11):2218–2230. doi:10.1038/ismej.2014.63.
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–230. doi:10.1038/ismej.2010.118.
  • Hansen L, Roager HM, Søndertoft NB, Gøbel RJ, Kristensen M, Vallès-Colomer M, Vieira-Silva S, Ibrügger S, Lind MV, Mærkedahl RB. et al. A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat Commun. 2018;9(1):1–13. doi:10.1038/s41467-018-07019-x.
  • Ercolini D, Francavilla R, Vannini L, De Filippis F, Capriati T, Di Cagno R, Iacono G, De Angelis M, Gobbetti M. From an imbalance to a new imbalance: Italian-style gluten-free diet alters the salivary microbiota and metabolome of African celiac children. Sci Rep. 2015;5(1):1–11. doi:10.1038/srep18571.
  • Garcia-Mazcorro JF, Rivera-Gutierrez X, Cobos-Quevedo O, Grube-Pagola P, Meixueiro-Daza A, Hernandez-Flores K, Cabrera-Jorge F, Vivanco-Cid H, Dowd S, Remes-Troche J. et al. First insights into the gut microbiota of Mexican patients with celiac disease and non-celiac gluten sensitivity. Nutrients. 2018;10(11):1641. doi:10.3390/nu10111641.
  • Naseri K, Dabiri H, Rostami-Nejad M, Yadegar A, Houri H, Olfatifar M, Sadeghi A, Saadati S, Ciacci C, Iovino P. et al. Influence of low FODMAP-gluten free diet on gut microbiota alterations and symptom severity in Iranian patients with irritable bowel syndrome. BMC Gastroenterol. 2021;21(1):1–14. doi:10.1186/s12876-021-01868-5.
  • Costa A, Constante M, Stefanolo JP, Temprano P, Sugai E, Sanchez MIP, Moreno ML, Vázquez H, Mauriño E, Gonzalez AF. et al. Tu1459 Symptomatic and asymptomatic celiac disease patients on long-term gluten-free diet exhibit differences in fecal microbial taxa. Gastroenterology. 2020;158(6):S–1116. doi:10.1016/S0016-5085(20)33459-4.
  • Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, Zhong H, Vatanen T, Gevers D, Wijmenga C. et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016;8(1):1–11. doi:10.1186/s13073-016-0295-y.
  • Sánchez‐Jiménez F, Ruiz‐Pérez MV, Urdiales JL, Medina MA. Pharmacological potential of biogenic amine–polyamine interactions beyond neurotransmission. British J Pharmacology. 2013;170(1):4–16. doi:10.1111/bph.12109.
  • Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. IJMS. 2019;20(6):1482. doi:10.3390/ijms20061482.
  • de Souza AZZ, Zambom AZ, Abboud KY, Reis SK, Tannihão F, Guadagnini D, Saad MJA, Prada PO. Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: a pilot study. Nutrition. 2015;31(6):884–889. doi:10.1016/j.nut.2015.01.004.
  • Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Martin M, de la Vega-Correa L, Zapata C, Burokas A, Blasco G, Coll C, Escrichs A. et al. Microbiota alterations in proline metabolism impact depression. Cell Metab. 2022;34(5):681–701. e10. doi:10.1016/j.cmet.2022.04.001.
  • Yao CK, Rotbart A, Ou JZ, Kalantar-Zadeh K, Muir JG, Gibson PR. Modulation of colonic hydrogen sulfide production by diet and mesalazine utilizing a novel gas-profiling technology. Gut Microbes. 2018;9(6):510–522. doi:10.1080/19490976.2018.1451280.
  • Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B. et al. Biogenic amines in fermented foods. Eur J Clin Nutr. 2010;64(3):S95–S100. doi:10.1038/ejcn.2010.218.
  • Mayorga Reyes L, González Vázquez R, Cruz Arroyo SM, Melendez Avalos A, Reyes Castillo PA, Chavaro Pérez DA, Ramos Terrones I, Ramos Ibáñez N, Rodríguez Magallanes MM, Langella P. et al. Correlation between diet and gut bacteria in a population of young adults. Int J Food Sci Nutr. 2016;67(4):470–478. doi:10.3109/09637486.2016.1162770.
  • De Filippo C, Di Paola M, Ramazzotti M, Albanese D, Pieraccini G, Banci E, Miglietta F, Cavalieri D, Lionetti P. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front Microbiol. 2017;8:1979. doi:10.3389/fmicb.2017.01979.
  • David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE, Alm EJ. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15(7):1–15. doi:10.1186/gb-2014-15-7-r89.
  • Tap J, Furet J-P, Bensaada M, Philippe C, Roth H, Rabot S, Lakhdari O, Lombard V, Henrissat B, Corthier G. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–4964. doi:10.1111/1462-2920.13006.
  • Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLOS One. 2010;5(11):e15046. doi:10.1371/journal.pone.0015046.
  • Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015;64(1):93–100. doi:10.1136/gutjnl-2014-307264.
  • Drabińska N, Jarocka-Cyrta E, Markiewicz L, Krupa-Kozak U. The effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: results of a randomized, placebo-controlled trial. Nutrients. 2018;10(2):201. doi:10.3390/nu10020201.
  • Davis LM, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLOS ONE. 2011;6(9):e25200. doi:10.1371/journal.pone.0025200.
  • Chu N, He J, Ma R, Kong A, Chan J, Chow E. 556-P: the relationship between short-chain fermentable carbohydrates (FODMAPs) , gut microbiome, and glucose intolerance: an exploratory analysis. Diabetes. 2022;71(Supplement_1). doi:10.2337/db22-556-P.
  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N. et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–588. doi:10.1038/nature12480.
  • Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, Lapek JD, Zhang L, Wang W-B, Hao S. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell. 2018;175(3):679–694. doi:10.1016/j.cell.2018.09.004.
  • Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, Thielecke F, Jackson KG, Tuohy KM. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr. 2010;104(9):1353–1356. doi:10.1017/S0007114510002084.
  • van Trijp MPH, Schutte S, Esser D, Wopereis S, Hoevenaars FPM, Hooiveld GJEJ, Afman LA. Minor changes in the composition and function of the gut microbiota during a 12-week whole grain wheat or refined wheat intervention correlate with liver fat in overweight and obese adults. J Nutr. 2021;151(3):491–502. doi:10.1093/jn/nxaa312.
  • Connolly ML, Lovegrove JA, Tuohy KM. In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes. Anaerobe. 2010;16(5):483–488. doi:10.1016/j.anaerobe.2010.07.001.
  • Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013;7(2):269–280. doi:10.1038/ismej.2012.104.
  • Lappi J, Salojärvi J, Kolehmainen M, Mykkänen H, Poutanen K, de Vos WM, Salonen A. Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in Finnish adults with metabolic syndrome. J Nutr. 2013;143(5):648–655. doi:10.3945/jn.112.172668.
  • Aoe S, Nakamura F, Fujiwara S. Effect of wheat bran on fecal butyrate-producing bacteria and wheat bran combined with barley on bacteroides abundance in Japanese healthy adults. Nutrients. 2018;10(12):1980. doi:10.3390/nu10121980.
  • Smith SC, Choy R, Johnson SK, Hall RS, Wildeboer-Veloo ACM, Welling GW. Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rRNA gene fluorescent in situ hybridization. Eur J Nutr. 2006;45(6):335–341. doi:10.1007/s00394-006-0603-1.
  • Eid N, Enani S, Walton G, Corona G, Costabile A, Gibson G, Rowland I, Spencer JPE. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J Nutr Sci. 2014;3:3. doi:10.1017/jns.2014.16.
  • Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A. et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579(7800):586–591. doi:10.1038/s41586-020-2101-7.
  • Jones RB, Alderete TL, Kim JS, Millstein J, Gilliland FD, Goran MI. High intake of dietary fructose in overweight/obese teenagers associated with depletion of eubacterium and streptococcus in gut microbiome. Gut Microbes. 2019;10(6):712–719. doi:10.1080/19490976.2019.1592420.
  • Francavilla R, Calasso M, Calace L, Siragusa S, Ndagijimana M, Vernocchi P, Brunetti L, Mancino G, Tedeschi G, Guerzoni E. et al. Effect of lactose on gut microbiota and metabolome of infants with cow’s milk allergy. Pediatr Allergy Immunol. 2012;23(5):420–427. doi:10.1111/j.1399-3038.2012.01286.x.
  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–108. doi:10.1126/science.1208344.
  • Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’population. Int J Obes. 2013;37(2):216–223. doi:10.1038/ijo.2012.33.
  • Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Li H, Wang R, Tang J, Huang T. et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut. 2019;68(8):1417–1429. doi:10.1136/gutjnl-2018-317609.
  • Lang JM, Pan C, Cantor RM, Tang WHW, Garcia-Garcia JC, Kurtz I, Hazen SL, Bergeron N, Krauss RM, Lusis AJ. et al. Impact of individual traits, saturated fat, and protein source on the gut microbiome. MBio. 2018;9(6):e01604–18. doi:10.1128/mBio.01604-18.
  • Lim RRX, Park MA, Wong LH, Haldar S, Lim KJ, Nagarajan N, Henry CJ, Jiang YR, Moskvin OV. Gut microbiome responses to dietary intervention with hypocholesterolemic vegetable oils. Npj Biofilms Microbiomes. 2022;8(1):1–12. doi:10.1038/s41522-022-00287-y.
  • Simoes CD, Maukonen J, Kaprio J, Rissanen A, Pietiläinen KH, Saarela M. Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J Nutr. 2013;143(4):417–423. doi:10.3945/jn.112.166322.
  • Pu S, Khazanehei HR, Krause DO, West SG, Kris‐Etherton PM, Jenkins DJ, Lamarche B, Jones PJ, Khafipour E. Effects of unsaturated fatty acids (USFA) on human gut microbiome profile in a subset of canola oil multicenter intervention trial (COMIT). FASEB; 2013;27:1056.7. doi:10.1096/fasebj.27.1_supplement.1056.7.
  • Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr & Diabetes. 2014;4(6):e121–e121. doi:10.1038/nutd.2014.23.
  • Trautvetter U, Camarinha-Silva A, Jahreis G, Lorkowski S, Glei M. High phosphorus intake and gut-related parameters–results of a randomized placebo-controlled human intervention study. Nutr J. 2018;17(1):1–11. doi:10.1186/s12937-018-0331-4.
  • Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y, Walters W, Nessel L, Delaroque C, Hao F, Gershuni V. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology. 2022;162(3):743–756. doi:10.1053/j.gastro.2021.11.006.
  • Gerasimidis K, Bryden K, Chen X, Papachristou E, Verney A, Roig M, Hansen R, Nichols B, Papadopoulou R, Parrett A. et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur J Nutr. 2020;59(7):3213–3230. doi:10.1007/s00394-019-02161-8.
  • Pellock SJ, Redinbo MR. Glucuronides in the gut: sugar-driven symbioses between microbe and host. J Biol Chem. 2017;292(21):8569–8576. doi:10.1074/jbc.R116.767434.
  • Calame W, Weseler AR, Viebke C, Flynn C, Siemensma AD. Gum Arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br J Nutr. 2008;100(6):1269–1275. doi:10.1017/S0007114508981447.
  • Ostrowski MP, La Rosa SL, Kunath BJ, Robertson A, Pereira G, Hagen LH, Varghese NJ, Qiu L, Yao T, Flint G. et al. Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nat Microbiol. 2022;7(4):556–569. doi:10.1038/s41564-022-01093-0.
  • Hrncirova L, Hudcovic T, Sukova E, Machova V, Trckova E, Krejsek J, Hrncir T. Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiol (Praha). 2019;64(4):497–508. doi:10.1007/s12223-018-00674-z.
  • Le Lay C, Fernandez B, Hammami R, Ouellette M, Fliss I. On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon. Front Microbiol. 2015;6:1020. doi:10.3389/fmicb.2015.01020.
  • Frankenfeld CL, Sikaroodi M, Lamb E, Shoemaker S, Gillevet PM. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Annals of Epidemiology. 2015;25(10):736–742. e4. doi:10.1016/j.annepidem.2015.06.083.
  • Horwitz DL, McLane M, Kobe P. Response to single dose of aspartame or saccharin by NIDDM patients. Diabetes Care. 1988;11(3):230–234. doi:10.2337/diacare.11.3.230.
  • Tordoff MG, Alleva AM. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. Am J Clin Nutr. 1990;51(6):963–969. doi:10.1093/ajcn/51.6.963.
  • Ahmad SY, Friel J, Mackay D. The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients. 2020;12(11):3408. doi:10.3390/nu12113408.
  • Collins J, Robinson C, Danhof H, Knetsch CW, van Leeuwen HC, Lawley TD, Auchtung JM, Britton RA. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature. 2018;553(7688):291–294. doi:10.1038/nature25178.
  • Gatea F, Sârbu I, Vamanu E. In vitro modulatory effect of stevioside, as a partial sugar replacer in sweeteners, on human child microbiota. Microorganisms. 2021;9(3):590. doi:10.3390/microorganisms9030590.
  • Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–186. doi:10.1038/nature13793.
  • Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, Zmora N, Leshem A, Heinemann M, Linevsky R. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell. 2022;185(18):3307–3328.e19. doi:10.1016/j.cell.2022.07.016.
  • Serrano J, Smith KR, Crouch AL, Sharma V, Yi F, Vargova V, LaMoia TE, Dupont LM, Serna V, Tang F. et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome. 2021;9(1):1–18. doi:10.1186/s40168-020-00976-w.
  • Arrigoni E, Brouns F, Amado R. Human gut microbiota does not ferment erythritol. Br J Nutr. 2005;94(5):643–646. doi:10.1079/BJN20051546.
  • Beards E, Tuohy K, Gibson G. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. Br J Nutr. 2010;104(5):701–708. doi:10.1017/S0007114510001078.
  • Gostner A, Blaut M, Schäffer V, Kozianowski G, Theis S, Klingeberg M, Dombrowski Y, Martin D, Ehrhardt S, Taras D. et al. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr. 2006;95(1):40–50. doi:10.1079/BJN20051589.
  • Finney M, Smullen J, Foster HA, Brokx S, Storey DM. Effects of low doses of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. Eur J Nutr. 2007;46(6):307–314. doi:10.1007/s00394-007-0666-7.
  • Ballongue J, Schumann C, Quignon P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J Gastroenterol. 1997;32(sup222):41–44. doi:10.1080/00365521.1997.11720716.
  • Ouwehand AC, Tiihonen K, Saarinen M, Putaala H, Rautonen N. Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. Br J Nutr. 2008;101(3):367–375. doi:10.1017/S0007114508003097.
  • Salminen S, Salminen E, Koivistoinen P, Bridges J, Marks V. Gut microflora interactions with xylitol in the mouse, rat and man. Food Chem Toxicol. 1985;23(11):985–990. doi:10.1016/0278-6915(85)90248-0.
  • Costabile A, Fava F, Röytiö H, Forssten SD, Olli K, Klievink J, Rowland IR, Ouwehand AC, Rastall RA, Gibson GR. et al. Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr. 2012;108(3):471–481. doi:10.1017/S0007114511005782.
  • Jabeen HS, Ur Rahman S, Mahmood S, Anwer S. Genotoxicity assessment of amaranth and Allura red using Saccharomyces cerevisiae. Bull Environ Contam Toxicol. 2013;90(1):22–26. doi:10.1007/s00128-012-0870-x.
  • Ivusic Polic I. Evaluation of the impact of azo dyes on the metabolism of stabilized fecal communities and in vitro cell culture. Ontario, Canada: University of Guelph; 2018. https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/ce048094-a395-447f-bc83-8e35e54084e6/content.
  • Pan H, Feng J, He G-X, Cerniglia CE, Chen H. Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria. Anaerobe. 2012;18(4):445–453. doi:10.1016/j.anaerobe.2012.05.002.
  • O’Connor K, Morrissette M, Strandwitz P, Ghiglieri M, Caboni M, Liu H, Khoo C, D’Onofrio A, Lewis K. Cranberry extracts promote growth of bacteroidaceae and decrease abundance of Enterobacteriaceae in a human gut simulator model. PLoS One. 2019;14(11):e0224836. doi:10.1371/journal.pone.0224836.
  • Hatch M. Gut microbiota and oxalate homeostasis. Ann Transl Med. 2017;5(2). doi:10.21037/atm.2016.12.70.
  • Lerner A, Benzvi C. Microbial transglutaminase is a very frequently used food additive and is a potential inducer of autoimmune/neurodegenerative diseases. Toxics. 2021;9(10):233. doi:10.3390/toxics9100233.
  • Mano F, Ikeda K, Joo E, Fujita Y, Yamane S, Harada N, Inagaki N. The effect of white rice and white bread as staple foods on gut microbiota and host metabolism. Nutrients. 2018;10(9):1323. doi:10.3390/nu10091323.
  • Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. 2018;119(2):176–189. doi:10.1017/S0007114517003440.
  • Rejeski JJ, Wilson FM, Nagpal R, Yadav H, Weinberg RB. The impact of a Mediterranean diet on the gut microbiome in healthy human subjects: a pilot study. Digestion. 2022;103(2):133–140. doi:10.1159/000519445.
  • Kung H-F, Lee Y-C, Huang Y-L, Huang Y-R, Su Y-C, Tsai Y-H. Degradation of histamine by lactobacillus plantarum isolated from miso products. J Food Prot. 2017;80(10):1682–1688. doi:10.4315/0362-028X.JFP-17-135.
  • Schink M, Konturek PC, Tietz E, Dieterich W, Pinzer TC, Wirtz S, Neurath MF, Zopf Y. Microbial patterns in patients with histamine intolerance. J Physiol Pharmacol. 2018;69(4):579–593.
  • Holscher HD, Caporaso JG, Hooda S, Brulc JM, Fahey GC, Swanson KS. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015;101(1):55–64. doi:10.3945/ajcn.114.092064.
  • Ukhanova M, Wang X, Baer DJ, Novotny JA, Fredborg M, Mai V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br J Nutr. 2014;111(12):2146–2152. doi:10.1017/S0007114514000385.
  • Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–569. doi:10.1126/science.aad3369.
  • Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH, Novotny JA, Baer DJ. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial. J Nutr. 2018;148(6):861–867. doi:10.1093/jn/nxy004.
  • Holscher HD, Taylor A, Swanson K, Novotny J, Baer D. Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: a randomized controlled trial. Nutrients. 2018;10(2):126. doi:10.3390/nu10020126.
  • Dieterich W, Schuppan D, Schink M, Schwappacher R, Wirtz S, Agaimy A, Neurath MF, Zopf Y. Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity. Clin Nutr. 2019;38(2):697–707. doi:10.1016/j.clnu.2018.03.017.
  • García-Mantrana I, Calatayud M, Romo-Vaquero M, Espín JC, Selma MV, Collado MC. Urolithin metabotypes can determine the modulation of gut microbiota in healthy individuals by tracking walnuts consumption over three days. Nutrients. 2019;11(10):2483. doi:10.3390/nu11102483.
  • Gargari G, Deon V, Taverniti V, Gardana C, Denina M, Riso P, Guardamagna O, Guglielmetti S. Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS Microbiol Ecol. 2018;94(5):fiy045. doi:10.1093/femsec/fiy045.
  • Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN, Walter J. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host & Microbe. 2019;25(6):789–802.e5. doi:10.1016/j.chom.2019.05.005.
  • Dhillon J, Li Z, Ortiz RM. Almond snacking for 8 wk increases alpha-diversity of the gastrointestinal microbiome and decreases bacteroides fragilis abundance compared with an isocaloric snack in college freshmen. Curr Dev Nutr. 2019;3(8):nzz079. doi:10.1093/cdn/nzz079.
  • Farhangi MA, Dehghan P, Namazi N. Prebiotic supplementation modulates advanced glycation end-products (AGEs), soluble receptor for AGEs (sRAGE), and cardiometabolic risk factors through improving metabolic endotoxemia: a randomized-controlled clinical trial. Eur J Nutr. 2020;59(7):3009–3021. doi:10.1007/s00394-019-02140-z.
  • Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona Diaz F, Andrés-Lacueva C, Tinahones FJ. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012;95(6):1323–1334. doi:10.3945/ajcn.111.027847.
  • Peng Q, Huo D, Ma C, Jiang S, Wang L, Zhang J. Monosodium glutamate induces limited modulation in gut microbiota. J Funct Foods. 2018;49:493–500. doi:10.1016/j.jff.2018.09.015.
  • Sun Z, Wang W, Li L, Zhang X, Ning Z, Mayne J, Walker K, Stintzi A, Figeys D. Comprehensive assessment of functional effects of commonly used sweeteners on ex vivo human gut microbiome. Microbiol. Spectr. 2022:10(4):e00412–e00422.
  • Macfarlane G, Allison C, Gibson SAW, Cummings JH. Contribution of the microflora to proteolysis in the human large intestine. J Appl Bacteriol. 1988;64(1):37–46. doi:10.1111/j.1365-2672.1988.tb02427.x.
  • Fernandez-Feo M, Wei G, Blumenkranz G, Dewhirst FE, Schuppan D, Oppenheim FG, Helmerhorst EJ. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Clin Microbiol Infect. 2013;19(9):E386–E394. doi:10.1111/1469-0691.12249.
  • Herrán AR, Pérez-Andrés J, Caminero A, Nistal E, Vivas S, Ruiz de Morales JM, Casqueiro J. Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients. Res Microbiol. 2017;168(7):673–684. doi:10.1016/j.resmic.2017.04.008.
  • Caminero A, Herrán AR, Nistal E, Pérez-Andrés J, Vaquero L, Vivas S, Ruiz de Morales JMG, Albillos SM, Casqueiro J. Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease. FEMS Microbiol Ecol. 2014;88(2):309–319. doi:10.1111/1574-6941.12295.
  • Taylor BC, Lejzerowicz F, Poirel M, Shaffer JP, Jiang L, Aksenov A, Litwin N, Humphrey G, Martino C, Miller-Montgomery S. et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems. 2020;5(2):e00901–19. doi:10.1128/mSystems.00901-19.
  • Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S. et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184(16):4137–4153.e14. doi:10.1016/j.cell.2021.06.019.
  • Sánchez B. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis: a role for bifidobacteria and lactobacilli? Nat Rev Gastro Hepat. 2018;15(4):205–205. doi:10.1038/nrgastro.2018.23.
  • Kumar Singh A, Cabral C, Kumar R, Ganguly R, Kumar Rana H, Gupta A, Rosaria Lauro M, Carbone C, Reis F, Pandey AK. et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients. 2019;11(9):2216. doi:10.3390/nu11092216.
  • Tuck CJ, Malakar S, Barrett JS, Muir JG, Gibson PR. Naturally‐occurring dietary salicylates in the genesis of functional gastrointestinal symptoms in patients with irritable bowel syndrome: Pilot study. JGH Open. 2021;5(8):871–878. doi:10.1002/jgh3.12578.
  • Bancil AS. et al. Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: mechanistic insights in inflammatory bowel disease. J Crohn’s Colitis. 2021;15(6):1068–1079. doi:10.1093/ecco-jcc/jjaa254.
  • Chen H, Xu H, Heinze TM, Cerniglia CE. Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilus and lactobacillus fermentum. J Ind Microbiol Biotechnol. 2009;36(12):1459. doi:10.1007/s10295-009-0633-9.
  • Bamberger C, Rossmeier A, Lechner K, Wu L, Waldmann E, Fischer S, Stark R, Altenhofer J, Henze K, Parhofer K. et al. A walnut-enriched diet affects gut microbiome in healthy caucasian subjects: a randomized, controlled trial. Nutrients. 2018;10(2):244. doi:10.3390/nu10020244.
  • Mills CE, Tzounis X, Oruna-Concha M-J, Mottram DS, Gibson GR, Spencer JPE. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr. 2015;113(8):1220–1227. doi:10.1017/S0007114514003948.
  • Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–116. doi:10.1038/s41575-020-00375-4.
  • Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172–184. doi:10.1080/19490976.2017.1290756.
  • Febbraio MA, Karin M. “Sweet death”: fructose as a metabolic toxin that targets the gut-liver axis. Cell Metab. 2021;33(12):2316–2328. doi:10.1016/j.cmet.2021.09.004.
  • Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, Turnbaugh JA, Verdin E, Hall KD, Leibel RL. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020;181(6):1263–1275.e16. doi:10.1016/j.cell.2020.04.027.
  • Nogal B, Blumberg JB, Blander G, Jorge M. Gut microbiota–Informed precision nutrition in the generally healthy individual: are we there yet? Curr Dev Nutr. 2021;5(9):nzab107. doi:10.1093/cdn/nzab107.
  • Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction. Microorganisms. 2019;7(1):19. doi:10.3390/microorganisms7010019.
  • Celis AI, Relman DA. Competitors versus collaborators: micronutrient processing by pathogenic and commensal human-associated gut bacteria. Mol Cell. 2020;78(4):570–576. doi:10.1016/j.molcel.2020.03.032.
  • Barone M, D’Amico F, Brigidi P, Turroni S. Gut microbiome–micronutrient interaction: the key to controlling the bioavailability of minerals and vitamins? BioFactors. 2022;48(2):307–314. doi:10.1002/biof.1835.
  • Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroen Hepatol. 2013;28(S4):9–17. doi:10.1111/jgh.12294.
  • Naliyadhara N, Kumar A, Kumar Gangwar S, Nair Devanarayanan T, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara A. Interplay of dietary antioxidants and gut microbiome in human health: what has been learnt thus far? J Funct Foods. 2023;100:105365. doi:10.1016/j.jff.2022.105365.
  • Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Ann NY Acad Sci. 2016;1372(1):53–64. doi:10.1111/nyas.13145.
  • Glowacki RW, Martens EC. If you eat it or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. J Bacteriol. 2020;203(9):e00481–20. doi:10.1128/JB.00481-20.
  • Diaz-Amigo C, Popping B. Accuracy of ELISA detection methods for gluten and reference materials: a realistic assessment. J Agric Food Chem. 2013;61(24):5681–5688. doi:10.1021/jf3046736.
  • Lackner S, Malcher V, Enko D, Mangge H, Holasek SJ, Schnedl WJ. Histamine-reduced diet and increase of serum diamine oxidase correlating to diet compliance in histamine intolerance. Eur J Clin Nutr. 2019;73(1):102–104. doi:10.1038/s41430-018-0260-5.
  • Barrett JS, Gibson PR. Fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and nonallergic food intolerance: FODMAPs or food chemicals? Therap Adv Gastroenterol. 2012;5(4):261–268. doi:10.1177/1756283X11436241.
  • Burns G, Pryor J, Holtmann G, Walker MM, Talley NJ, Keely S. Immune activation in functional gastrointestinal disorders. Gastroenterol Hepatol (N Y). 2019;15:539.
  • Lee D, Swan CK, Suskind D, Wahbeh G, Vanamala J, Baldassano RN, Leonard MB, Lampe JW. Children with Crohn’s disease frequently consume select food additives. Dig Dis Sci. 2018;63(10):2722–2728. doi:10.1007/s10620-018-5145-x.
  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. doi:10.1038/s41579-020-0433-9.
  • Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP. Fermented foods, health and the gut microbiome. Nutrients. 2022;14(7):1527. doi:10.3390/nu14071527.
  • Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M. et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–1094. doi:10.1016/j.cell.2015.11.001.
  • Marietta EV, Geno DM, Smyrk TC, Becker A, Alexander JA, Camilleri M, Murray JA, Katzka DA. Presence of intraepithelial food antigen in patients with active eosinophilic oesophagitis. Aliment Pharmacol Ther. 2017;45(3):427–433. doi:10.1111/apt.13877.