977
Views
0
CrossRef citations to date
0
Altmetric
Review Article

New methods to unveil host-microbe interaction mechanisms along the microbiota-gut-brain-axis

, , , &
Article: 2351520 | Received 20 Oct 2023, Accepted 01 May 2024, Published online: 08 May 2024

References

  • Konjevod M, Nikolac Perkovic M, Sáiz J, Svob Strac D, Barbas C, Rojo D. Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and psychiatric diseases. J Pharmaceut Biomed. 2021;194:113681. doi:10.1016/j.jpba.2020.113681.
  • Tillisch K. The effects of gut microbiota on CNS function in humans. Gut Microbes. 2014;5(3):404–15. doi:10.4161/gmic.29232.
  • 11 - EMBO mol med - 2022 - Michaud - alteration of microbiota antibody‐mediated immune selection contributes to dysbiosis in.Pdf.
  • Cryan JF, O’riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV. et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013. doi:10.1152/physrev.00018.2018.
  • Mayer EA, Tillisch K, Gupta A. Gut/Brain axis and the microbiota. Nutr Cancer. 2015;125(4):463–479. doi:10.1172/JCI76304.
  • Mayer EA, Nance K, Chen S. The gut – brain axis. Annu Rev Med. 2022;73(1):439–453. doi:10.1146/annurev-med-042320-014032.
  • Bo TB, Zhang XY, Wen J, Deng K, Qin XW, Wang DH. The microbiota–gut–brain interaction in regulating host metabolic adaptation to cold in male Brandt’s voles (lasiopodomys brandtii). Isme J. 2019;13(12):3037–3053. doi:10.1038/s41396-019-0492-y.
  • Wang J, Li Q, Huang Q, Lv M, Li P, Dai J, Zhou M, Xu J, Zhang F, Gao J. et al. Washed microbiota transplantation accelerates the recovery of abnormal changes by light-induced stress in tree shrews. Front Cell Infect Microbiol. 2021;11(June):1–14. doi:10.3389/fcimb.2021.685019.
  • Emerson KJ, Fontaine SS, Kohl KD, Woodley SK. Temperature and the microbial environment alter brain morphology in a larval amphibian. J Exp Biol. 2023;226(12). doi:10.1242/jeb.245333.
  • Chang R, Chen J, Zhong Z, Li Y, Wu K, Zheng H, Yang Y. Inflammatory bowel disease-associated Escherichia coli strain LF82 in the damage of gut and cognition of honeybees. Front Cell Infect Microbiol. 2022;12(August):1–12. doi:10.3389/fcimb.2022.983169.
  • Kelly TR, Vinson AE, King GM, Lattin CR. No guts about it: captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows (Passer domesticus). Integr Orga Biol. 2022;4(1). doi:10.1093/iob/obac010.
  • Huang C, Hao E, Yue Q, Liu M, Wang D, Chen Y, Shi L, Zeng D, Zhao G, Chen H. et al. Malfunctioned inflammatory response and serotonin metabolism at the microbiota-gut-brain axis drive feather pecking behavior in laying hens. Poultry Sci. 2023;102(8):102686. doi:10.1016/j.psj.2023.102686.
  • Sutkus LT, Joung S, Hirvonen J, Jensen HM, Ouwehand AC, Mukherjea R, Donovan SM, Dilger RN. Influence of 2′-fucosyllactose and Bifidobacterium longum subspecies infantis supplementation on cognitive and structural brain development in young pigs. Front Neurosci. 2022;16(April):1–13. doi:10.3389/fnins.2022.860368.
  • Johnson KVA, Watson KK, Dunbar RIM, Burnet PWJ. Sociability in a non-captive macaque population is associated with beneficial gut bacteria. Front Microbiol. 2022;13(November):1–12. doi:10.3389/fmicb.2022.1032495.
  • Yıldırım A, Kraimi N, Constantin P, Mercerand F, Leterrier C. Effects of tryptophan and probiotic supplementation on growth and behavior in quail. Poultry Sci. 2020;99(11):5206–5213. doi:10.1016/j.psj.2020.07.047.
  • Kraimi N, Calandreau L, Zemb O, Germain K, Dupont C, Velge P, Guitton E, Lavillatte S, Parias C, Leterrier C. et al. Effects of a gut microbiota transfer on emotional reactivity in Japanese quails (coturnix japonica). J Exp Biol. 2019;222(10). doi:10.1242/jeb.202879.
  • Ortiz de Ora L, Bess EN. Emergence of Caenorhabditis elegans as a model organism for dissecting the gut–brain axis. mSystems. 2021;6(4):1–5. doi:10.1128/mSystems.00755-21.
  • Kim DH, Flavell SW. Host-microbe interactions and the behavior of Caenorhabditis elegans. J Neurogenet. 2020;34(3‑4):500–509. doi:10.1080/01677063.2020.1802724.
  • Horvath TD, Ihekweazu FD, Haidacher SJ, Ruan W, Engevik KA, Fultz R, Hoch KM, Luna RA, Oezguen N, Spinler JK. et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. iScience. 2022;25(5):104158. doi:10.1016/j.isci.2022.104158.
  • Engevik MA, Luck B, Visuthranukul C, Ihekweazu FD, Engevik AC, Shi Z, Danhof HA, Chang-Graham AL, Hall A, Endres BT. et al. Human-derived bifidobacterium dentium modulates the mammalian serotonergic system and gut–brain axis. Cell Mol Gastroenterol Hepatol. 2021;11(1):221–248. doi:10.1016/j.jcmgh.2020.08.002.
  • Trevelline BK, Kohl KD. The gut microbiome influences host diet selection behavior. Proc Natl Acad Sci USA. 2022;119(17):1–8. doi:10.1073/pnas.2117537119.
  • Li H, Xiang Y, Zhu Z, Wang W, Jiang Z, Zhao M, Cheng S, Pan F, Liu D, Ho RCM. et al. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J Neuroinflammation. 2021;18(1):1–18. doi:10.1186/s12974-021-02303-y.
  • Luk B, Veeraragavan S, Engevik M, Balderas M, Major A, Runge J, Luna RA, Versalovic J. Postnatal colonization with human « infant-type » bifidobacterium species alters behavior of adult gnotobiotic mice. PLOS One. 2018;13(5):1–25. doi:10.1371/journal.pone.0196510.
  • Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, Liu Y, Cheng K, Zhou C, Wang H. et al. Erratum: the gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice (science advances. Sci Adv. 2019;5(2):1–11. doi:10.1126/sciadv.aau8317).
  • Wolstenholme JT, Saunders JM, Smith M, Kang JD, Hylemon PB, González-Maeso J, Fagan A, Zhao D, Sikaroodi M, Herzog J. et al. Reduced alcohol preference and intake after fecal transplant in patients with alcohol use disorder is transmissible to germ-free mice. Nat Commun. 2022;13(1):1–14. doi:10.1038/s41467-022-34054-6.
  • Seo Y, Tak H, Park D, Song H, Choe S, Park C, Park B. The neuroprotective effect of NEUROMIDE, a compound bioidentical to commensal bacteria metabolites. Life. 2022;12(10):1529. doi:10.3390/life12101529.
  • Muller PA, Schneeberger M, Matheis F, Wang P, Kerner Z, Ilanges A, Pellegrino K, Del Mármol J, Castro TBR, Furuichi M. et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature. 2020;583(7816):441–446. doi:10.1038/s41586-020-2474-7.
  • Angelino D, Carregosa D, Domenech-Coca C, Savi M, Figueira I, Brindani N, Jang S, Lakshman S, Molokin A, Urban JF. et al. 5-(hydroxyphenyl)-γ-valerolactone-sulfate, a key microbial metabolite of flavan-3-ols, is able to reach the brain: evidence from different in silico, in vitro and in vivo experimental models. Nutrients. 2019;11(11):2678. doi:10.3390/nu11112678.
  • Jo JK, Lee G, Nguyen CD, Park SE, Kim EJ, Kim HW, Seo S-H, Cho K-M, Kwon SJ, Kim J-H. et al. Effects of donepezil treatment on brain metabolites, gut microbiota, and gut metabolites in an amyloid beta-induced cognitive impairment mouse pilot model. Molecules. 2022;27(19):6591. doi:10.3390/molecules27196591.
  • Ambrosini YM, Borcherding D, Kanthasamy A, Kim HJ, Willette AA, Jergens A. et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front Aging Neurosci. 2019;11(JUN):1–14. doi:10.3389/fnagi.2019.00130.
  • Kubinyi E, Bel Rhali S, Sándor S, Szabó A, Felföldi T. Gut microbiome composition is associated with age and memory performance in pet dogs. Animals. 2020 August 24;10(9):1488. doi:10.3390/ani10091488.
  • Mondo E, Barone M, Soverini M, D’Amico F, Cocchi M, Petrulli C, Mattioli M, Marliani G, Candela M, Accorsi PA. Gut microbiome structure and adrenocortical activity in dogs with aggressive and phobic behavioral disorders. Heliyon. 29 jan 2020;6(1):e03311. doi:10.1016/j.heliyon.2020.e03311.
  • Sacoor C, Marugg JD, Lima NR, Empadinhas N, Montezinho L, Di Cerbo A. Gut-brain axis impact on canine anxiety disorders: new challenges for behavioral veterinary medicine. Vet Med Int. 2024;2024:1–10. doi:10.1155/2024/2856759.
  • Kirchoff NS, Udell MAR, Sharpton TJ. The gut microbiome correlates with conspecific aggression in a small population of rescued dogs (Canis familiaris). PeerJ. 2019;2019(7):e6103. doi:10.7717/peerj.6103.
  • Chen J, Zhao BC, Dai XY, Xu YR, Kang JX, Li JL. Drinking alkaline mineral water confers diarrhea resistance in maternally separated piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis. J Adv Res. 2023;52:29–43. doi:10.1016/j.jare.2022.12.008.
  • Fusco, Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary.Pdf. Bioeng Transl Med. 2022;7(2). doi:10.1002/btm2.10296.
  • Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic approaches using zebrafish to study the microbiota–gut–brain axis in neurological disorders. Cells. 2021;10(3):1–25. doi:10.3390/cells10030566.
  • Chen Z, Zhijie C, Yuting Z, Chan L, Shilin X, Qichun Z, Jinying O, Jing L, Chaohua L, Zhixian M. et al. The ameliorative effects of isorhynchophylline on morphine dependence are mediated through the microbiota-gut-brain axis. Front Pharmacol. 2021;12(June):1–22. doi:10.3389/fphar.2021.526923.
  • Han H, Jang J. Recent advances in biofabricated gut models to understand the gut-brain axis in neurological diseases. Front Med Technol. 2022;4(September):1–14. doi:10.3389/fmedt.2022.931411.
  • Raimondi I, Izzo L, Tunesi M, Comar M, Albani D, Giordano C. Organ-on-A-Chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut-brain axis in neurodegeneration. Front Bioeng Biotechnol. 2020;7(January). doi:10.3389/fbioe.2019.00435.
  • Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A. The impact of food bioactives on health: in vitro and ex vivo models. Food, Health & Consumer ResearchFood Chemistry. 2015;7:1–327. doi:10.1007/978-3-319-16104-4_27.
  • Yissachar N, Zhou Y, Ung L, Lai NY, Mohan JF, Ehrlicher A, Weitz DA, Kasper DL, Chiu IM, Mathis D. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell. 2017;168(6):1135–1148.e12. doi:10.1016/j.cell.2017.02.009.
  • Trapecar M, Wogram E, Svoboda D, Communal C, Omer A, Lungjangwa T, Sphabmixay P, Velazquez J, Schneider K, Wright CW. et al. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci Adv. 2021;7(5). doi:10.1126/sciadv.abd1707.
  • Sauter SN, Allenspach K, Gaschen F, Gröne A, Ontsouka E, Blum JW. Cytokine expression in an ex vivo culture system of duodenal samples from dogs with chronic enteropathies: modulation by probiotic bacteria. Domest Anim Endocrinol. 2005;29(4):605–622. doi:10.1016/j.domaniend.2005.04.006.
  • Ahrends T, Weiner M, Mucida D. Isolation of myenteric and submucosal plexus from mouse gastrointestinal tract and subsequent flow cytometry and immunofluorescence. Star Protoc. 2022;3(1):101157. doi:10.1016/j.xpro.2022.101157.
  • Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q. et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol. 2019;17(1):1–21. doi:10.1186/s12915-019-0652-6.
  • Muñiz AJ, Topal T, Brooks MD, Sze A, Kim DH, Jordahl J, Nguyen J, Krebsbach PH, Savelieff MG, Feldman EL. et al. Engineered extracellular matrices facilitate brain organoids from human pluripotent stem cells. Ann Clin Transl Neurol. 2023;10(7):1239–1253. doi:10.1002/acn3.51820.
  • Li XG, Chen M, Zhao S, Wang X. Intestinal models for personalized medicine: from conventional models to microfluidic primary intestine-on-a-chip. Stem Cell Rev Rep. 2022;18(6):2137–2151. doi:10.1007/s12015-021-10205-y.
  • Raimondi MT, Albani D, Giordano C. An organ-on-a-chip engineered platform to study the microbiota–gut–brain axis in neurodegeneration. Trends Mol Med. 2019;25(9):737–740. doi:10.1016/j.molmed.2019.07.006.
  • Siwczak F, Loffet E, Kaminska M, Koceva H, Mahe MM, Mosig AS. Intestinal stem cell-on-chip to study human host-microbiota interaction. Front Immunol. 2021;12(December):1–13. doi:10.3389/fimmu.2021.798552.
  • Thomas DP, Zhang J, Nguyen NT, Ta HT. Microfluidic Gut-on-a-Chip: fundamentals and challenges. Biosensors. 2023;13(1):136. doi:10.3390/bios13010136.
  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–2174. doi:10.1039/c2lc40074j.
  • Gabriel-Segard T, Rontard J, Miny L, Dubuisson L, Batut A, Debis D. Human chip model to study gut-brain axis neuro- immunological communication involved in inflammatory bowel diseases. International journal of Molecular Sciences. 2023;24(13):10568. doi:10.3390/ijms241310568.
  • Horvath TD, Haidacher SJ, Engevik MA, Luck B, Ruan W, Ihekweazu F, Bajaj M, Hoch KM, Oezguen N, Spinler JK. et al. Interrogation of the mammalian gut–brain axis using LC–MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models. Nat Protoc. 2023;18(2):490–529. doi:10.1038/s41596-022-00767-7.
  • Mayeli A, Al Zoubi O, White EJ, Chappelle S, Kuplicki R, Morton A, Bruce J, Smith R, Feinstein JS, Bodurka J. et al. Parieto-occipital ERP indicators of gut mechanosensation in humans. Nat Commun. 2023;14(1). doi:10.1038/s41467-023-39058-4.
  • Balasubramani PP, Walke A, Grennan G, Perley A, Purpura S, Ramanathan D. (2022). Simultaneous Gut-Brain Electrophysiology Shows Cognition and Satiety Specific Coupling. Sensors.2022. doi:10.3390/s22239242.
  • Vujic A, Krause C, Tso G, Lin J, Han B, Maes P. Gut-brain computer interfacing (GBCI): wearable monitoring of gastric myoelectric activity. Annu Int Conf IEEE. Eng Med Biol Soc. 2019;5886–5889. doi:10.1109/EMBC.2019.8856568.
  • He B, Sheng C, Yu X, Zhang L, Chen F, Han Y. Alterations of gut microbiota are associated with brain structural changes in the spectrum of Alzheimer’s disease: the SILCODE study in Hainan cohort. Front Aging Neurosci. 2023;15:15. doi:10.3389/fnagi.2023.1216509.
  • Van Oudenhove L. Understanding gut-brain interactions in gastrointestinal pain by neuroimaging: lessons from somatic pain studies. Neurogastroent Motil. 2011;23(4):292–302. doi:10.1111/j.1365-2982.2010.01666.x.
  • Giron MC, Mazzi U. Molecular imaging of microbiota-gut-brain axis: searching for the right targeted probe for the right target and disease. Nucl Med Biol. 2021;92:72–77. doi:10.1016/j.nucmedbio.2020.11.002.
  • Keszthelyi D, Beckers A. Technical advances allow in-depth understanding of the gut–brain interaction—yet important caveats remain. Neurogastroent Motil. 2022;34(11):1–2. doi:10.1111/nmo.14446.
  • Uzbay T. Germ-free animal experiments in the gut microbiota studies. Curr Opin Pharmacol. 2019;49:6–10. doi:10.1016/j.coph.2019.03.016.
  • Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF. Microbes & neurodevelopment – absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun. 2015;50:209–220. doi:10.1016/j.bbi.2015.07.009.
  • Zhu L. Editorial: animal social behaviour and gut microbiome. Front Microbiol. 2023;14(3):3–6. doi:10.3389/fmicb.2023.1210717.
  • Liu C, Zhu S, Zhang J, Ren K, Li K, Yu J. Inflammatory bowel diseases, interleukin-6 and interleukin-6 receptor subunit alpha in causal association with cerebral cortical structure: a Mendelian randomization analysis. Front Immunol. 2023;14(April):1–10. doi:10.3389/fimmu.2023.1154746.