1,023
Views
0
CrossRef citations to date
0
Altmetric
Review

Host-microbiota interaction in intestinal stem cell homeostasis

, , , , &
Article: 2353399 | Received 02 Feb 2024, Accepted 06 May 2024, Published online: 17 May 2024

References

  • Mu C, Zhu W. Understanding the relationship between the microbiome and the structure and function of the pig gastrointestinal tract. Understanding gut microbiomes as targets for improving pig gut health. 2022. doi:10.19103/AS.2021.0089.06.
  • Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019;16(1):19–26. doi:10.1038/s41575-018-0081-y.
  • Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15(1):19–33. doi:10.1038/nrm3721.
  • van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71(1):241–260. doi:10.1146/annurev.physiol.010908.163145.
  • Santos AJM, Lo Y, Mah AT, Kuo CJ. The intestinal stem cell niche: homeostasis and adaptations. Trends Cell Biol. 2018;28(12):1062–1078. doi:10.1016/j.tcb.2018.08.001.
  • Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cell Mol Gastroenterol Hepatol. 2015;1(1):28–40. doi:10.1016/j.jcmgh.2014.11.004.
  • Wu H, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14. doi:10.4161/gmic.19320.
  • Bansal K, Trinath J, Chakravortty D, Patil SA, Balaji KN. Pathogen-specific TLR2 protein activation programs macrophages to induce wnt-beta-catenin signaling. J Biol Chem. 2011;286(42):37032–37044. doi:10.1074/jbc.M111.260414.
  • Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Disease. 2013;4(3):e537. doi:10.1038/cddis.2013.50.
  • Hochmuth CE, Biteau B, Bohmann D, Jasper H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell. 2011;8(2):188–199. doi:10.1016/j.stem.2010.12.006.
  • Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol. 2021;42(7):604–621. doi:10.1016/j.it.2021.05.004.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. doi:10.1038/s41422-020-0332-7.
  • Cox TO, Lundgren P, Nath K, Thaiss CA. Metabolic control by the microbiome. Genome Med. 2022;14(1):80–93. doi:10.1186/s13073-022-01092-0.
  • Alonso S, Yilmaz ÖH. Nutritional regulation of intestinal stem cells. Annu Rev Nutr. 2018;38(1):273–301. doi:10.1146/annurev-nutr-082117-051644.
  • Mattila J, Kokki K, Hietakangas V, Boutros M. Stem cell intrinsic hexosamine metabolism regulates intestinal adaptation to nutrient content. Dev Cell. 2018;47(1):112–121. doi:10.1016/j.devcel.2018.08.011.
  • Aliluev A, Tritschler S, Sterr M, Oppenländer L, Hinterdobler J, Greisle T, Irmler M, Beckers J, Sun N, Walch A. et al. Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat Metab. 2021;3(9):1202–1216. doi:10.1038/s42255-021-00458-9.
  • Yao C, Gou X, Tian C, Zhou L, Hao R, Wan L, Wang Z, Li M, Tong X. Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites. J Genet Genomics. 2023;50(10):735–774. doi:10.1016/j.jgg.2022.12.002.
  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–265. doi:10.1038/nature07935.
  • Zachos NC, Kovbasnjuk O, Foulke-Abel J, In J, Blutt SE, de Jonge HR, Estes MK, Donowitz M. Human Enteroids/Colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J Biol Chem. 2016;291(8):3759–3766. doi:10.1074/jbc.R114.635995.
  • Fair KL, Colquhoun J, Hannan NRF. Intestinal organoids for modelling intestinal development and disease. Phil Trans R Soc B. 2018;373(1750):20170217. doi:10.1098/rstb.2017.0217.
  • Yin Y, Guo S, Wan D, Wu X, Yin Y. Enteroids: promising in vitro models for studies of intestinal physiology and nutrition in farm animals. J Agric Food Chem. 2019;67(9):2421–2428. doi:10.1021/acs.jafc.8b06908.
  • Rubert J, Schweiger PJ, Mattivi F, Tuohy K, Jensen KB, Lunardi A. Intestinal organoids: a tool for modelling diet-microbiome-host interactions. Trends Endocrinol Metab. 2020;31(11):848–858. doi:10.1016/j.tem.2020.02.004.
  • Haynes J, Palaniappan B, Tsopmegha E, Sundaram U. Regulation of nutrient and electrolyte absorption in human organoid-derived intestinal epithelial cell monolayers. Transl Res. 2022;248:22–35. doi:10.1016/j.trsl.2022.04.008.
  • Co JY, Margalef-Català M, Li X, Mah AT, Kuo CJ, Monack DM, Amieva MR. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep. 2019;26(9):2509–2520.e4. doi:10.1016/j.celrep.2019.01.108.
  • Hou Q, Ye L, Liu H, Huang L, Yang Q, Turner JR, Yu Q. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 2018;25(9):1657–1670. doi:10.1038/s41418-018-0070-2.
  • Lukonin I, Serra D, Challet Meylan L, Volkmann K, Baaten J, Zhao R, Meeusen S, Colman K, Maurer F, Stadler MB. et al. Phenotypic landscape of intestinal organoid regeneration. Nature. 2020;586(7828):275–280. doi:10.1038/s41586-020-2776-9.
  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–1007. doi:10.1038/nature06196.
  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis A-P. et al. The β-Catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241–250. doi:10.1016/s0092-8674(02)01014-0.
  • Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M, Van Gijn ME, Suijkerbuijk S, Van de Wetering M, Marra G. et al. The intestinal Wnt/TCF signature. Gastroenterology. 2007;132(2):628–632. doi:10.1053/j.gastro.2006.08.039.
  • Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk MEG, Henderson DE, Baffour-Awuah NY, Ambruzs DM, Fogli LK, Algra S. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA. 2011;108(1):179–184. doi:10.1073/pnas.1013004108.
  • Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham J, Juchheim A, Prasad N, Levy S. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012;149(1):146–158. doi:10.1016/j.cell.2012.02.042.
  • Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40(7):915–920. doi:10.1038/ng.165.
  • Breault DT, Min IM, Carlone DL, Farilla LG, Ambruzs DM, Henderson DE, Algra S, Montgomery RK, Wagers AJ, Hole N. et al. Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci U S A. 2008;105(30):10420–10425. doi:10.1073/pnas.0804800105.
  • Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, Su N, Luo Y, Heilshorn SC, Amieva MR. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 2012;109(2):466–471. doi:10.1073/pnas.1118857109.
  • Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478(7368):255–259. doi:10.1038/nature10408.
  • Murata K, Jadhav U, Madha S, van Es J, Dean J, Cavazza A, Wucherpfennig K, Michor F, Clevers H, Shivdasani RA. et al. Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell. 2020;26(3):377–390. doi:10.1016/j.stem.2019.12.011.
  • Shivdasani RA, Clevers H, de Sauvage FJ. Tissue regeneration: reserve or reverse? Science. 2021;371(6531):784–786. doi:10.1126/science.abb6848.
  • Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal regeneration: regulation by the microenvironment. Dev Cell. 2020;54(4):435–446. doi:10.1016/j.devcel.2020.07.009.
  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469(7330):415–418. doi:10.1038/nature09637.
  • Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–999. doi:10.1016/j.cell.2017.05.016.
  • Hao H, Jiang X, Cong F. Control of wnt receptor turnover by R-spondin-ZNRF3/RNF43 signaling module and its dysregulation in cancer. Cancers Basel. 2016;8(6):54–66. doi:10.3390/cancers8060054.
  • Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J. et al. Essential requirement for wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of dickkopf-1. Proc Natl Acad Sci U S A. 2004;101(1):266–271. doi:10.1073/pnas.2536800100.
  • Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17(14):1709–1713. doi:10.1101/gad.267103.
  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking tcf-4. Nat Genet. 1998;19(4):379–383. doi:10.1038/1270.
  • van Es JH, Haegebarth A, Kujala P, Itzkovitz S, Koo B-K, Boj SF, Korving J, van den Born M, van Oudenaarden A, Robine S. et al. A critical role for the wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cellr Biol. 2012;32(10):1918–1927. doi:10.1128/MCB.06288-11.
  • Sancho R, Cremona CA, Behrens A. Stem cell and progenitor fate in the mammalian intestine: notch and lateral inhibition in homeostasis and disease. EMBO Rep. 2015;16(5):571–581. doi:10.15252/embr.201540188.
  • Noah TK, Shroyer NF. Notch in the intestine: regulation of homeostasis and pathogenesis. Annu Rev Physiol. 2013;75(1):263–288. doi:10.1146/annurev-physiol-030212-183741.
  • Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294(5549):2155–2158. doi:10.1126/science.1065718.
  • Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. et al. Control of endodermal endocrine development by hes-1. Nat Genet. 2000;24(1):36–44. doi:10.1038/71657.
  • Suzuki K, Fukui H, Kayahara T, Sawada M, Seno H, Hiai H, Kageyama R, Okano H, Chiba T. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine. Biochem Biophys Res Commun. 2005;328(1):348–352. doi:10.1016/j.bbrc.2004.12.174.
  • Tian H, Biehs B, Chiu C, Siebel CW, Wu Y, Costa M, de Sauvage F, Klein O. Opposing activities of notch and wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep. 2015;11(1):33–42. doi:10.1016/j.celrep.2015.03.007.
  • Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 2014;15(1):62–69. doi:10.1002/embr.201337799.
  • Wong VWY, Stange DE, Page ME, Buczacki S, Wabik A, Itami S, van de Wetering M, Poulsom R, Wright NA, Trotter MWB. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol. 2012;14(4):401–408. doi:10.1038/ncb2464.
  • Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell. 2017;20(2):177–190. doi:10.1016/j.stem.2016.11.001.
  • Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700. doi:10.1016/s0092-8674(03)00432-x.
  • Feng X, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005;21(1):659–693. doi:10.1146/annurev.cellbio.21.022404.142018.
  • Hardwick JCH, Van Den Brink GR, Bleuming SA, Ballester I, Van Den Brande JMH, Keller JJ, Offerhaus GJA, Van Deventer SJH, Peppelenbosch MP. Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. Gastroenterology. 2004;126(1):111–121. doi:10.1053/j.gastro.2003.10.067.
  • Haramis A, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJA, Clevers H. De Novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science. 2004;303(5664):1684–1686. doi:10.1126/science.1093587.
  • Kosinski C, Li VSW, Chan ASY, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST. et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A. 2007;104(39):15418–15423. doi:10.1073/pnas.0707210104.
  • Beumer J, Puschhof J, Yengej FY, Zhao L, Martinez-Silgado A, Blotenburg M, Begthel H, Boot C, van Oudenaarden A, Chen Y-G. et al. BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Rep. 2022;38(9):110438–110458. doi:10.1016/j.celrep.2022.110438.
  • Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, Jaeger E, Lewis A, Freeman-Mills L, Giner FC. et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med. 2015;21(1):62–70. doi:10.1038/nm.3750.
  • He X, Zhang J, Tong W, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of wnt–β-catenin signaling. Nat Genet. 2004;36(10):1117–1121. doi:10.1038/ng1430.
  • Ma H, Brosens LAA, Offerhaus GJA, Giardiello FM, de Leng WWJ, Montgomery EA. Pathology and genetics of hereditary colorectal cancer. Pathology. 2018;50(1):49–59. doi:10.1016/j.pathol.2017.09.004.
  • Qi Z, Li Y, Zhao B, Xu C, Liu Y, Li H, Zhang B, Wang X, Yang X, Xie W. et al. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat Commun. 2017;8(1):13824–13828. doi:10.1038/ncomms13824.
  • Hou Q, Ye L, Huang L, Yu Q. The research progress on intestinal stem cells and its relationship with intestinal microbiota. Front Immunol. 2017;8:599–608. doi:10.3389/fimmu.2017.00599.
  • Mu C, Yang Y, Zhu W. Crosstalk between the immune receptors and gut microbiota. Curr Protein Pept Sci. 2015;16(7):622–631. doi:10.2174/1389203716666150630134356.
  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 2010;8(3):171–184. doi:10.1038/nrmicro2297.
  • Riehl TE, Alvarado D, Ee X, Zuckerman A, Foster L, Kapoor V, Thotala D, Ciorba MA, Stenson WF. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut. 2019;68(6):1003–1013. doi:10.1136/gutjnl-2018-316226.
  • Hou Q, Jia J, Lin J, Zhu L, Xie S, Yu Q, Li Y. Bacillus subtilis programs the differentiation of intestinal secretory lineages to inhibit salmonella infection. Cell Rep. 2022;40(13):111416. doi:10.1016/j.celrep.2022.111416.
  • Neal MD, Sodhi CP, Jia H, Dyer M, Egan CE, Yazji I, Good M, Afrazi A, Marino R, Slagle D. et al. Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J Biol Chem. 2012;287(44):37296–37308. doi:10.1074/jbc.M112.375881.
  • Yi H, Patel AK, Sodhi CP, Hackam DJ, Hackam AS, Rodrigues MM. Novel role for the innate immune receptor Toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis. PLos One. 2012;7(5):e36560. doi:10.1371/journal.pone.0036560.
  • Sodhi CP, Neal MD, Siggers R, Sho S, Ma C, Branca MF, Prindle T, Russo AM, Afrazi A, Good M. et al. Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology. 2012;143(3):708–718. doi:10.1053/j.gastro.2012.05.053.
  • Naito T, Mulet C, De Castro C, Molinaro A, Saffarian A, Nigro G, Bérard M, Clerc M, Pedersen AB, Sansonetti PJ. et al. Lipopolysaccharide from crypt-specific core microbiota modulates the colonic epithelial proliferation-to-differentiation balance. mBio. 2017;8(5):e01680–17. doi:10.1128/mBio.01680-17.
  • Petnicki-Ocwieja T, Hrncir T, Liu Y, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi KS. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A. 2009;106(37):15813–15818. doi:10.1073/pnas.0907722106.
  • Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–8872. doi:10.1074/jbc.C200651200.
  • Nigro G, Rossi R, Commere P, Jay P, Sansonetti PJ. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe. 2014;15(6):792–798. doi:10.1016/j.chom.2014.05.003.
  • Levy A, Stedman A, Deutsch E, Donnadieu F, Virgin HW, Sansonetti PJ, Nigro G. Innate immune receptor NOD2 mediates LGR5+ intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation. Proc Natl Acad Sci U S A. 2020;117(4):1994–2003. doi:10.1073/pnas.1902788117.
  • Lee C, Choi C, Kang HS, Shin S, Kim S, Park HC, Hong SN. NOD2 supports crypt survival and epithelial regeneration after radiation-induced injury. Int J Mol Sci. 2019;20(17):4297–4310. doi:10.3390/ijms20174297.
  • Lee K, Kim S, Kim E, Ha E, You H, Kim B, Kim M-J, Kwon Y, Ryu J-H, Lee W-J. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell. 2013;153(4):797–811. doi:10.1016/j.cell.2013.04.009.
  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Angela Nieto M. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436(7047):123–127. doi:10.1038/nature03688.
  • Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014;141(22):4206–4218. doi:10.1242/dev.107086.
  • Nath A, Chakrabarti P, Sen S, Barui A. Reactive oxygen species in modulating intestinal stem cell dynamics and function. Stem Cell Rev Rep. 2022;18(7):2328–2350. doi:10.1007/s12015-022-10377-1.
  • Burtenshaw D, Hakimjavadi R, Redmond EM, Cahill CP. Nox, reactive oxygen species and regulation of vascular cell fate. Antioxidants (Basel). 2017;6(4):90–112. doi:10.3390/antiox6040090.
  • Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354. doi:10.1152/physrev.00040.2012.
  • Morris O, Jasper H. Reactive oxygen species in intestinal stem cell metabolism, fate and function. Free Radic Biol Med. 2021;166:140–146. doi:10.1016/j.freeradbiomed.2021.02.015.
  • Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 2013;32(23):3017–3028. doi:10.1038/emboj.2013.224.
  • Iatsenko I, Boquete J, Lemaitre B. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens Drosophila Lifespan. Immunity. 2018;49(5):929–942. doi:10.1016/j.immuni.2018.09.017.
  • Lamberti MJ, Pansa MF, Vera RE, Fernández-Zapico ME, Rumie Vittar NB, Rivarola VA, Karhausen J. Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy. PLoS One. 2017;12(5):e0177801. doi:10.1371/journal.pone.0177801.
  • Minatel IO, Francisqueti FV, Corrêa CR, Lima GPP. Antioxidant activity of γ-oryzanol: a complex network of Interactions. Int J Mol Sci. 2016;17(8):1107–1122. doi:10.3390/ijms17081107.
  • Walaas GA, Gopalakrishnan S, Bakke I, Skovdahl HK, Flatberg A, Østvik AE, Sandvik AK, Bruland T. Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids. Front Immunol. 2023;14:1095812. doi:10.3389/fimmu.2023.1095812.
  • Wang RX, Henen MA, Lee JS, Vögeli B, Colgan SP. Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes. 2021;13(1):1938380. doi:10.1080/19490976.2021.1938380.
  • Kim YI, Yi EJ, Kim YD, Lee AR, Chung J, Ha HC, Cho JM, Kim S-R, Ko H-J, Cheon J-H. et al. Local stabilization of hypoxia-inducible factor-1α controls intestinal inflammation via enhanced gut barrier function and immune regulation. Front Immunol. 2020;11:609689. doi:10.3389/fimmu.2020.609689.
  • Shao Y, Wang K, Xiong X, Liu H, Zhou J, Zou L, Qi M, Liu G, Huang R, Tan Z. et al. The landscape of interactions between hypoxia-inducible factors and reactive oxygen species in the gastrointestinal tract. Oxid Med Cell Longev. 2021;2021(1):1–9. doi:10.1155/2021/8893663.
  • Liu Y, Wang C, Wang Y, Ma Z, Xiao J, McClain C, Li X, Feng W. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in caco-2 cells. Toxicol Appl Pharmacol. 2012;264(2):212–221. doi:10.1016/j.taap.2012.08.00.
  • Stine RR, Sakers AP, TeSlaa T, Kissig M, Stine ZE, Kwon CW, Cheng L, Lim H-W, Kaestner KH, Rabinowitz JD. et al. PRDM16 maintains homeostasis of the intestinal epithelium by controlling Region-Specific Metabolism. Cell Stem Cell. 2019;25(6):830–845. doi:10.1016/j.stem.2019.08.017.
  • Bajic D, Niemann A, Hillmer A-K, Mejias-Luque R, Bluemel S, Docampo M, Funk MC, Tonin E, Boutros M, Schnabl B. et al. Gut microbiota-derived propionate regulates the expression of Reg3 mucosal lectins and ameliorates experimental colitis in mice. J Crohns Colitis. 2020;14(10):1462–1472. doi:10.1093/ecco-jcc/jjaa065.
  • Duan C, Wu J, Wang Z, Tan C, Hou L, Qian W, Han C, Hou X. Fucose promotes intestinal stem cell-mediated intestinal epithelial development through promoting Akkermansia-related propanoate metabolism. Gut Microbes. 2023;15(1):2233149. doi:10.1080/19490976.2023.2233149.
  • Bartram HP, Scheppach W, Schmid H, Hofmann A, Dusel G, Richter F, Richter A, Kasper H. Proliferation of human colonic mucosa as an intermediate biomarker of carcinogenesis: effects of butyrate, deoxycholate, calcium, ammonia, and pH. Cancer Res. 1993;53(14):3283–3288. doi:10.1016/j.aap.2005.11.012.
  • Yin X, Farin HF, van Es JH, Clevers H, Langer R, Karp JM. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods. 2014;11(1):106–112. doi:10.1038/nmeth.2737.
  • Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165(7):1708–1720. doi:10.1016/j.cell.2016.05.018.
  • Ichikawa H, Sakata T. Effect of L-lactic acid, short-chain fatty acids, and pH in cecal infusate on morphometric and cell kinetic parameters of rat cecum. Dig Dis Sci. 1997;42(8):1598–1610. doi:10.1023/a:1018884625737.
  • Okada T, Fukuda S, Hase K, Nishiumi S, Izumi Y, Yoshida M, Hagiwara T, Kawashima R, Yamazaki M, Oshio T. et al. Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice. Nat Commun. 2013;4(1):1654. doi:10.1038/ncomms2668.
  • Lee Y, Kim T, Kim Y, Lee S, Kim S, Kang SW, Yang J-Y, Baek I-J, Sung YH, Park Y-Y. et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe. 2018;24(6):833–846.e6. doi:10.1016/j.chom.2018.11.002.
  • Fukui S, Shimoyama T, Tamura K, Yamamura M, Satomi M. Mucosal blood flow and generation of superoxide in rat experimental colitis induced by succinic acid. J Gastroenterol. 1997;32(4):464–471. doi:10.1007/BF02934084.
  • Inagaki A, Ichikawa H, Sakata T. Inhibitory effect of succinic acid on epithelial cell proliferation of colonic mucosa in rats. J Nutr Sci Vitaminol (Tokyo). 2007;53(4):377–379. doi:10.3177/jnsv.53.377.
  • Li X, Huang G, Zhang Y, Ren Y, Zhang R, Zhu W, Yu K. Succinate signaling attenuates high-fat diet-induced metabolic disturbance and intestinal barrier dysfunction. Pharmacol Res. 2023;194:106865. doi:10.1016/j.phrs.2023.106865.
  • Li X, Mao M, Zhang Y, Yu K, Zhu W. Succinate modulates intestinal barrier function and inflammation response in pigs. Biomolecules. 2019;9(9):486–500. doi:10.3390/biom9090486.
  • Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo M, Phillips R. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41(2):296–310. doi:10.1016/j.immuni.2014.06.014.
  • Park J, Lee J, Lee E, Hwang W, Kim D. Indole-3-Carbinol promotes goblet-cell differentiation regulating Wnt and Notch signaling pathways AhR-dependently. Mol Cells. 2018;41(6):290–300. doi:10.14348/molcells.2018.2167.
  • Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. 2004;15(5):2156–2163. doi:10.1091/mbc.e03-12-0894.
  • Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, Hadden T, Yu Y, Majumdar APN. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther. 2016;7(1):181–191. doi:10.1186/s13287-016-0439-4.
  • Sorrentino G, Perino A, Yildiz E, El Alam G, Bou Sleiman M, Gioiello A, Pellicciari R, Schoonjans K. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. 2020;159(3):956–968.e8. doi:10.1053/j.gastro.2020.05.067.
  • Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu Q, Zhang T, Leblanc M, Liu S. et al. FXR regulates intestinal cancer stem cell proliferation. Cell. 2019;176(5):1098–1112. doi:10.1016/j.cell.2019.01.036.
  • Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–1345. doi:10.1016/j.cell.2016.05.041.
  • Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman S. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–526. doi:10.1016/j.cmet.2011.02.018.
  • Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X. Butyrate: a double-edged sword for health? Adv Nutr. 2018;9(1):21–29. doi:10.1093/advances/nmx009.
  • Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11(1):4457. doi:10.1038/s41467-020-18262-6.
  • Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X. et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology. 2020;158(4):985–999. doi:10.1053/j.gastro.2019.11.031.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–672. doi:10.1038/nrmicro3344.
  • Gao K, Mu C, Farzi A, Zhu W. Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr. 2020;11(3):709–723. doi:10.1093/advances/nmz127.
  • Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–724. doi:10.1016/j.chom.2018.05.003.
  • Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA. et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25–37. doi:10.1016/j.chom.2017.06.007.
  • Lamas B, Richard ML, Leducq V, Pham H-P, Michel M-L, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605. doi:10.1038/nm.4102.
  • Park J, Choi A, Kim SJ, Cheong SW, Jeong S. AhR activation by 6-formylindolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells. Environ Toxicol Pharmacol. 2016;43:44–53. doi:10.1016/j.etap.2016.02.007.
  • Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science. 2017;357(6353):806–810. doi:10.1126/science.aah5825.
  • Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: bile acids in regulation of intestinal epithelial function in health and disease. Physiol Rev. 2018;98(4):1983–2023. doi:10.1152/physrev.00054.2017.
  • Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B. 2015;5(2):129–134. doi:10.1016/j.apsb.2015.01.001.
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–259. doi:10.1194/jlr.R500013-JLR200.
  • Xiang J, Zhang Z, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Effect of different bile acids on the intestine through enterohepatic circulation based on FXR. Gut Microbes. 2021;13(1):1949095. doi:10.1080/19490976.2021.1949095.
  • Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, Sim D, Jarr K, Spear ET, Singh G. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe. 2020;27(4):659–670.e5. doi:10.1016/j.chom.2020.01.021.
  • Kim T, Kim S, Kim Y, Lee Y, Lee S, Lee S, Kweon M-N. A high-fat diet activates the BAs-FXR Axis and triggers cancer-associated fibroblast properties in the colon. Cell Mol Gastroenterol Hepatol. 2022;13(4):1141–1159. doi:10.1016/j.jcmgh.2021.12.015.
  • Liu J, Mu C, Yu K, Zhu W. Effect of two different casein hydrolysates on small intestinal bacteria of growing pigs. Acta Microbiol Sin. 2018;58:63–72. doi:10.13343/j.cnki.wsxb.20170024.
  • Jing Y, Mu C, Wang H, Shen J, Zoetendal EG, Zhu W. Amino acid utilization allows intestinal dominance of Lactobacillus amylovorus. ISME J. 2022;16(11):2491–2502. doi:10.1038/s41396-022-01287-8.
  • Dai Z, Zhang J, Wu G, Zhu W. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids. 2010;39(5):1201–1215. doi:10.1007/s00726-010-0556-9.
  • Dai Z, Li X, Xi P, Zhang J, Wu G, Zhu W. Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids. 2012;42(5):1597–1608. doi:10.1007/s00726-011-0846-x.
  • Burrin DG, Stoll B. Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr. 2009;90:850S–856S. doi:10.3945/ajcn.2009.27462Y.
  • Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes. 2023;15(1):2222961. doi:10.1080/19490976.2023.2222961.
  • Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Eide SJ, Lovering SL, Wu G. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids. 2013;44(3):911–923. doi:10.1007/s00726-012-1420-x.
  • Zhu M, Qin Y, Gao C, Yan H, Wang X. L-glutamate drives porcine intestinal epithelial renewal by increasing stem cell activity via upregulation of the EGFR-ERK-mTORC1 pathway. Food Funct. 2020;11(3):2714–2724. doi:10.1039/c9fo03065d.
  • Qin Y, Zhou J, Zhu M, Zan G, Gao C, Yan H, Li X-G, Wang X-Q. L-glutamate requires β-catenin signalling through Frizzled7 to stimulate porcine intestinal stem cell expansion. Cell Mol Life Sci. 2022;79(10):523. doi:10.1007/s00018-022-04545-2.
  • Deng H, Gerencser AA, Jasper H. Signal integration by Ca(2+) regulates intestinal stem-cell activity. Nature. 2015;528(7581):212–217. doi:10.1038/nature16170.
  • Tian J, Li Y, Bao X, Yang F, Tang X, Jiang Q, Yang C, Yin Y, Yao K. Glutamine boosts intestinal stem cell-mediated small intestinal epithelial development during early weaning: involvement of WNT signaling. Stem Cell Rep. 2023;18(7):1451–1467. doi:10.1016/j.stemcr.2023.05.012.
  • Hou Q, Dong Y, Yu Q, Wang B, Le S, Guo Y, Zhang B. Regulation of the Paneth cell niche by exogenous L-arginine couples the intestinal stem cell function. FASEB J. 2020;34(8):10299–10315. doi:10.1096/fj.201902573RR.
  • Hou Q, Dong Y, Huang J, Liao C, Lei J, Wang Y, Lai Y, Bian Y, He Y, Sun J. et al. Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b. Commun Biol. 2020;3(1):611–624. doi:10.1038/s42003-020-01347-9.
  • Wang Y, Hou Q, Wu Y, Xu Y, Liu Y, Chen J, Xu L, Guo Y, Gao S, Yuan J. et al. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development. Anim Nutr. 2022;8(1):38–51. doi:10.1016/j.aninu.2021.06.001.
  • Saito Y, Iwatsuki K, Hanyu H, Maruyama N, Aihara E, Tadaishi M, Shimizu M, Kobayashi-Hattori K. Effect of essential amino acids on enteroids: methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells. Biochem Biophys Res Commun. 2017;488(1):171–176. doi:10.1016/j.bbrc.2017.05.029.
  • Zhou J, Wang Z, Zhang S, Lin H, Gao C, Zhao J, Yang C, Wang X-Q. Methionine and its hydroxyl analogues improve stem cell activity to eliminate deoxynivalenol-induced intestinal injury by reactivating Wnt/β-catenin signaling. J Agric Food Chem. 2019;67(41):11464–11473. doi:10.1021/acs.jafc.9b04442.
  • Obata F, Tsuda-Sakurai K, Yamazaki T, Nishio R, Nishimura K, Kimura M, Funakoshi M, Miura M. Nutritional Control of Stem Cell Division through S-Adenosylmethionine in Drosophila Intestine. Dev Cell. 2018;44(6):741–751.e3. doi:10.1016/j.devcel.2018.02.017.
  • Ye S, Shah BR, Li J, Liang H, Zhan F, Geng F. et al. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci Technol. 2022;124:237–249. doi:10.1016/j.tifs.2022.04.010.
  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353.e21. doi:10.1016/j.cell.2016.10.043.
  • Pi Y, Mu C, Gao K, Liu Z, Peng Y, Zhu W, Langille MGI. Increasing the hindgut carbohydrate/protein ratio by cecal infusion of corn starch or casein hydrolysate drives gut microbiota-related bile acid metabolism to stimulate colonic barrier function. mSystems. 2020;5(3):e00176–20. doi:10.1128/mSystems.00176-20.
  • Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074. doi:10.1016/j.jff.2020.104074.
  • Yu Z, Chen C, Kling DE, Liu B, McCoy JM, Merighi M, Heidtman M, Newburg DS. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology. 2013;23(2):169–177. doi:10.1093/glycob/cws138.
  • Elison E, Vigsnaes LK, Rindom Krogsgaard L, Rasmussen J, Sørensen N, McConnell B, Hennet T, Sommer MOA, Bytzer P. Oral supplementation of healthy adults with 2′- O -fucosyllactose and lacto- N -neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr. 2016;116(8):1356–1368. doi:10.1017/S0007114516003354.
  • Yang C, Zhang P, Fang W, Chen Y, Zhang N, Qiao Z, Troy FA, Wang B. Molecular mechanisms underlying how sialyllactose intervention promotes intestinal maturity by upregulating GDNF through a CREB-Dependent pathway in neonatal piglets. Mol Neurobiol. 2019;56(12):7994–8007. doi:10.1007/s12035-019-1628-9.
  • Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JCC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain J. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164(5):859–871. doi:10.1016/j.cell.2016.01.024.
  • Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, Pierre JF, Miyoshi J, Sontag TJ, Cham CM. et al. Small intestine microbiota regulate Host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe. 2018;23(4):458–469.e5. doi:10.1016/j.chom.2018.03.011.
  • Chen P, Torralba M, Tan J, Embree M, Zengler K, Stärkel P, van Pijkeren J-P, DePew J, Loomba R, Ho SB. et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology. 2015;148(1):203–214.e16. doi:10.1053/j.gastro.2014.09.014.
  • Lam YY, Ha CWY, Hoffmann JMA, Oscarsson J, Dinudom A, Mather TJ, Cook DI, Hunt NH, Caterson ID, Holmes AJ. et al. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring). 2015;23(7):1429–1439. doi:10.1002/oby.21122.
  • Rabot S, Membrez M, Bruneau A, Gérard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 2010;24(12):4948–4959. doi:10.1096/fj.10.164921.
  • Sato H, Zhang LS, Martinez K, Chang EB, Yang Q, Wang F, Howles PN, Hokari R, Miura S, Tso P. et al. Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in Sprague-Dawley rats. Gastroenterology. 2016;151(5):923–932. doi:10.1053/j.gastro.2016.07.009.
  • von Frieling J, Faisal MN, Sporn F, Pfefferkorn R, Nolte SS, Sommer F, Rosenstiel P, Roeder T. A high-fat diet induces a microbiota-dependent increase in stem cell activity in the Drosophila intestine. PloS Genet. 2020;16(5):e1008789. doi:10.1371/journal.pgen.1008789.
  • Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong S-J, Bauer-Rowe KE, Xifaras ME, Akkad A, Arias E. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531(7592):53–58. doi:10.1038/nature17173.
  • Wang Q, Lin Y, Sheng X, Xu J, Hou X, Li Y, Zhang H, Guo H, Yu Z, Ren F. et al. Arachidonic acid promotes intestinal regeneration by activating WNT signaling. Stem Cell Rep. 2020;15(2):374–388. doi:10.1016/j.stemcr.2020.06.009.
  • Cheng C, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL. et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell. 2019;178(5):1115–1131.e15. doi:10.1016/j.cell.2019.07.048.
  • Li S, Lu C, Diem EC, Li W, Guderian M, Lindenberg M, Kruse F, Buettner M, Floess S, Winny MR. et al. Acetyl-CoA-carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+ intestinal stem cell function. Nat Commun. 2022;13(1):3998–4013. doi:10.1038/s41467-022-31725-2.
  • Obniski R, Sieber M, Spradling AC. Dietary lipids modulate notch signaling and influence adult intestinal development and metabolism in Drosophila. Dev Cell. 2018;47(1):98–111.e5. doi:10.1016/j.devcel.2018.08.013.
  • Neophytou C, Soteriou E, Pitsouli C. The sterol transporter Npc2c controls intestinal stem cell mitosis and host-microbiome interactions in Drosophila. Metabolites. 2023;13(10):1084. doi:10.3390/metabo13101084.
  • Wang B, Rong X, Palladino END, Wang J, Fogelman AM, Martín MG, Alrefai WA, Ford DA, Tontonoz P. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell. 2018;22(2):206–220.e4. doi:10.1016/j.stem.2017.12.017.
  • Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res. 2021;95:35–53. doi:10.1016/j.nutres.2021.09.001.
  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–168. doi:10.1016/j.copbio.2012.08.005.
  • Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148–166. doi:10.3389/fgene.2015.00148.
  • Chang Y, Rossetti M, Vlamakis H, Casero D, Sunga G, Harre N, Miller S, Humphries R, Stappenbeck T, Simpson KW. et al. A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol. 2019;12(2):457–467. doi:10.3389/fgene.2015.00148.
  • Said HM, Mohammed ZM. Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol. 2006;22(2):140–146. doi:10.1097/01.mog.0000203870.22706.52.
  • Ichihashi T, Takagishi Y, Uchida K, Yamada H. Colonic absorption of menaquinone-4 and menaquinone-9 in rats. J Nutr. 1992;122(3):506–512. doi:10.1093/jn/122.3.506.
  • Wang Z, Li J, Wang Y, Wang L, Yin Y, Yin L, Yang H, Yin Y. Dietary vitamin a affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells. J Anim Sci. 2020;98(2):skaa020. doi:10.1093/jas/skaa020.
  • Qu N, Jeffcoat B, Maity P, Christensen RK, Múnera JO. Retinoic acid promotes the in vitro growth, patterning and improves the cellular composition of human pluripotent stem-cell-derived intestinal organoids. Int J Mol Sci. 2022;23(15):8624–8637. doi:10.3390/ijms23158624.
  • da Silva Ferreiram AR, van der Aa SAJ, Wehkamp T, Wardill HR, Ten Klooster JP, Garssen J, Harthoorn LF, Hartog A, Harmsen HJM, Tissing WJE. et al. Development of a self-limiting model of methotrexate-induced mucositis reinforces butyrate as a potential therapy. Sci Rep. 2021;11(1):22911–22922. doi:10.1038/s41598-021-02308-w.
  • Khan AA, Dragt BS, Porte RJ, Groothuis GMM. Regulation of VDR expression in rat and human intestine and liver–consequences for CYP3A expression. Toxicol In Vitro. 2010;24(3):822–829. doi:10.1016/j.tiv.2009.12.011.
  • Li W, Peregrina K, Houston M, Augenlicht LH. Vitamin D and the nutritional environment in functions of intestinal stem cells: implications for tumorigenesis and prevention. J Steroid Biochem Mol Biol. 2020;198:105556–105575. doi:10.1016/j.jsbmb.2019.105556.
  • Park J, Na H, Kim Y. The anti-aging effect of vitamin D and vitamin D receptor in drosophila midgut. Aging (Albany NY). 2024;16(3):2005–2025. doi:10.18632/aging.205518.
  • Neophytou C, Pitsouli C. Biotin controls intestinal stem cell mitosis and host-microbiome interactions. Cell Rep. 2022;38(10):110505–110531. doi:10.1016/j.celrep.2022.110505.
  • Pyndt Jørgensen B, Winther G, Kihl P, Nielsen DS, Wegener G, Hansen AK, Sørensen DB. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice. Acta Neuropsychiatr. 2015;27(5):307–311. doi:10.1017/neu.2015.10.
  • Reed S, Neuman H, Moscovich S, Glahn RP, Koren O, Tako E. Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients. 2015;7(12):9768–9784. doi:10.3390/nu7125497.
  • Sauer AK, Grabrucker AM. Zinc deficiency during pregnancy leads to altered microbiome and elevated inflammatory markers in mice. Front Neurosci. 2019;13:1295–1311. doi:10.3389/fnins.2019.01295.
  • La Carpia F, Wojczyk BS, Annavajhala MK, Rebbaa A, Culp-Hill R, D’Alessandro A, Freedberg DE, Uhlemann A-C, Hod EA. Transfusional iron overload and intravenous iron infusions modify the mouse gut microbiota similarly to dietary iron. NPJ Biofilms Microbiomes. 2019;5(1):26–37. doi:10.1038/s41522-019-0097-2.
  • Vonderheid SC, Tussing-Humphreys L, Park C, Pauls H, OjiNjideka Hemphill N, LaBomascus B, McLeod A, Koenig MD. A systematic review and meta-analysis on the effects of probiotic species on iron absorption and iron status. Nutrients. 2019;11(12):2938–2954. doi:10.3390/nu11122938.
  • Zhou J, Qin Y, Xiong X, Wang Z, Wang M, Wang Y, Wang QY, Yang HS, Yin Y. Effects of iron, vitamin A, and the interaction between the two nutrients on intestinal development and cell differentiation in piglets. J Anim Sci. 2021;99(10):1–9. doi:10.1093/jas/skab258.
  • Zhu H, Zhou Y, Qi Y, Ji R, Zhang J, Qian Z, Wu C, Tan J, Shao L, Chen D. et al. Preparation and characterization of selenium enriched-Bifidobacterium longum DD98, and its repairing effects on antibiotic-induced intestinal dysbacteriosis in mice. Food Funct. 2019;10(8):4975–4984. doi:10.1039/c9fo00960d.
  • Zhu C, Liang S, Zan G, Wang X, Gao C, Yan H, Wang X, Zhou J. Selenomethionine alleviates DON-Induced oxidative stress via modulating Keap1/Nrf2 signaling in the small intestinal epithelium. J Agric Food Chem. 2023;71(1):895–904. doi:10.1021/acs.jafc.2c07885.
  • Zhou J, Lin H, Wang Z, Zhang S, Huang D, Gao C, Yan H-C, Wang X-Q. Zinc L-Aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/β-catenin signaling pathway. Environ Pollut. 2020;262:114290. doi:10.1016/j.envpol.2020.114290.
  • Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van den Brink S, van Houdt WJ, Pronk A, van Gorp J, Siersema PD. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–1772. doi:10.1053/j.gastro.2011.07.050.
  • Hedrich WD, Panzica-Kelly JM, Chen S-J, Strassle B, Hasson C, Lecureux L, Wang L, Chen W, Sherry T, Gan J. et al. Development and characterization of rat duodenal organoids for ADME and toxicology applications. Toxicology. 2020;446:152614–152627. doi:10.1016/j.tox.2020.152614. Epub 2020 Oct 24.
  • Kardia E, Frese M, Smertina E, Strive T, Zeng X, Estes M, Hall RN. Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers. Sci Rep. 2021;11(1):5401–5413. doi:10.1038/s41598-021-84774-w.
  • Gonzalez LM, Williamson I, Piedrahita JA, Blikslager AT, Magness ST, Singh SR. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration. PLoS One. 2013;8(6):e66465. doi:10.1371/journal.pone.0066465.
  • Zhao D, Farnell MB, Kogut MH, Genovese KJ, Chapkin RS, Davidson LA, Berghman LR, Farnell YZ. From crypts to enteroids: establishment and characterization of avian intestinal organoids. Poultry Sci. 2022;101(3):101642–101653. doi:10.1016/j.psj.2021.101642.
  • Hamilton CA, Young R, Jayaraman S, Sehgal A, Paxton E, Thomson S, Katzer F, Hope J, Innes E, Morrison LJ. et al. Development of in vitro enteroids derived from bovine small intestinal crypts. Vet Res. 2018;49(1):54–69. doi:10.1186/s13567-018-0547-5.
  • Smith D, Price DRG, Burrells A, Faber MN, Hildersley KA, Chintoan-Uta C, Chapuis AF, Stevens M, Stevenson K, Burgess STG. et al. The development of ovine gastric and intestinal organoids for studying ruminant host-pathogen interactions. Front Cell Infect Microbiol. 2021;11:733811–733829. doi:10.3389/fcimb.2021.733811.
  • Zhang M, Lv L, Cai H, Li Y, Gao F, Yu L, Jiang Y, Tong W, Li L, Li G. et al. Long-term expansion of porcine intestinal organoids serves as an in vitro model for swine enteric coronavirus infection. Front Microbiol. 2022;13:865336–865349. doi:10.3389/fmicb.2022.865336.
  • Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–1194. doi:10.1126/science.1234852.
  • Yin Y, de Jonge HR, Wu X, Yin Y. Enteroids for nutritional studies. Mol Nutr Food Res. 2019;63(16):e1801143. doi:10.1002/mnfr.201801143.
  • van der Hee B, Loonen LMP, Taverne N, Taverne-Thiele JJ, Smidt H, Wells JM. Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids. Stem Cell Res. 2018;28:165–171. doi:10.1016/j.scr.2018.02.013. Epub 2018 Feb 20.
  • Kozuka K, He Y, Koo-McCoy S, Kumaraswamy P, Nie B, Shaw K, Chan P, Leadbetter M, He L, Lewis JG. et al. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Rep. 2017;9(6):1976–1990. doi:10.1016/j.stemcr.2017.10.013.
  • Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater. 2021;6(5):402–420. doi:10.1038/s41578-021-00279-y.
  • Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou S-H, Salahudeen AA, Smith AR. et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972–1988. doi:10.1016/j.cell.2018.11.021.
  • Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro, Nature. 2011;470(7332):105–109. doi:10.1038/nature09691. Epub 2010 Dec 12.
  • Du A, McCracken KW, Walp ER, Terry NA, Klein TJ, Han A, Wells JM, May CL. Arx is required for normal enteroendocrine cell development in mice and humans. Dev Biol. 2012;365(1):175–188. doi:10.1016/j.ydbio.2012.02.024.
  • Sommer CA, Capilla A, Molina-Estevez FJ, Gianotti-Sommer A, Skvir N, Caballero I, Chowdhury S, Mostoslavsky G. Modeling APC mutagenesis and familial adenomatous polyposis using human iPS cells. PLos One. 2018;13(7):e0200657. doi:10.1371/journal.pone.0200657.
  • Son YS, Ki SJ, Thanavel R, Kim J, Lee M, Kim J, Jung C-R, Han T-S, Cho H-S, Ryu C-M. et al. Maturation of human intestinal organoids in vitro facilitates colonization by commensal lactobacilli by reinforcing the mucus layer. FASEB J. 2020;34(8):9899–9910. doi:10.1096/fj.202000063R.
  • McCauley HA, Matthis AL, Enriquez JR, Nichol JT, Sanchez JG, Stone WJ, Sundaram N, Helmrath MA, Montrose MH, Aihara E. et al. Enteroendocrine cells couple nutrient sensing to nutrient absorption by regulating ion transport. Nat Commun. 2020;11(1):4791–4794. doi:10.1038/s41467-020-18536-z.
  • Watson CL, Mahe MM, Múnera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med. 2014;20(11):1310–1314. doi:10.1038/nm.3737.
  • Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, Chang C-F, Schiesser J, Aubert P, Stanley EG. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23(1):49–59. doi:10.1038/nm.4233.
  • Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, Sundaram N, Goddard GR, Wunderlich M, Brown NE, Staab JF, Latanich R, Zachos NC. et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol. 2023;41(6):824–831. doi:10.1038/s41587-022-01558-x.
  • Pitstick AL, Poling HM, Sundaram N, Lewis PL, Kechele DO, Sanchez JG, Scott MA, Broda TR, Helmrath MA, Wells JM. et al. Aggregation of cryopreserved mid-hindgut endoderm for more reliable and reproducible hPSC-derived small intestinal organoid generation. Stem Cell Rep. 2022;17(8):1889–1902. doi:10.1016/j.stemcr.2022.06.011.
  • Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A. et al. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell. 2017;21(1):51–54. doi:10.1016/j.stem.2017.05.020.
  • Dutta D, Clevers H. Organoid culture systems to study host-pathogen interactions. Curr Opin Immunol. 2017;48:15–22. doi:10.1016/j.coi.2017.07.012.
  • Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A, Boot C, de Waal A, Beumer J, Dutta D, Heo I. et al. Intestinal organoid cocultures with microbes. Nat Protoc. 2021;16(10):4633–4649. doi:10.1038/s41596-021-00589-z.
  • Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson IAS, Bartfeld S. Organoids as host models for infection biology – a review of methods. Exp Mol Med. 2021;53(10):1471–1482. doi:10.1038/s12276-021-00629-4.
  • VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, Ciorba MA, Stappenbeck TS. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut. 2015;64(6):911–920. doi:10.1136/gutjnl-2013-306651.
  • Moon C, VanDussen KL, Miyoshi H, Stappenbeck TS. Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis. Mucosal Immunol. 2014;7(4):818–828. doi:10.1038/mi.2013.98.
  • Wang Y, DiSalvo M, Gunasekara DB, Dutton J, Proctor A, Lebhar MS, Williamson IA, Speer J, Howard RL, Smiddy NM. et al. Self-renewing monolayer of primary colonic or rectal epithelial cells. Cell Mol Gastroenterol Hepatol. 2017;4(1):165–182. doi:10.1016/j.jcmgh.2017.02.011.
  • Roodsant T, Navis M, Aknouch I, Renes IB, van Elburg RM, Pajkrt D, Wolthers KC, Schultsz C, van der Ark KCH, Sridhar A. et al. A human 2D primary organoid-derived epithelial monolayer model to study host-pathogen interaction in the small intestine. Front Cell Infect Microbiol. 2020;10:272–286. doi:10.3389/fcimb.2020.00272.
  • Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, Liu G, Liu G. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J Virol. 2020;94(21):e01006–20. doi:10.1128/JVI.01006-20.
  • Jardé T, Chan WH, Rossello FJ, Kaur Kahlon T, Theocharous M, Kurian Arackal T, Flores T, Giraud M, Richards E, Chan E. et al. Mesenchymal niche-derived neuregulin-1 drives intestinal stem cell proliferation and regeneration of damaged epithelium. Cell Stem Cell. 2020;27(4):646–662.e7. doi:10.1016/j.stem.2020.06.021.
  • Deng M, Guerrero-Juarez CF, Sheng X, Xu J, Wu X, Yao K, Li M, Yang X, Li G, Xiao J. et al. Lepr+ mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via leptin–Igf1 axis. Cell Res. 2022;32(7):670–686. doi:10.1038/s41422-022-00643-9.
  • Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, Su C-W, Smillie C, Shekhar K. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell. 2018;175(5):1307–1320.e22. doi:10.1016/j.cell.2018.10.008.
  • Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528(7283):560–564. doi:10.1038/nature16460.
  • Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2021;20(5):345–361. doi:10.1038/s41573-020-0079-3.
  • Rajasekar S, Lin DSY, Abdul L, Liu A, Sotra A, Zhang F, Zhang B. IFlowPlate—A customized 384-well plate for the culture of perfusable vascularized colon organoids. Adv Mater. 2020;32(46):e2002974. doi:10.1002/adma.202002974.
  • Zhu P, Lu T, Wu J, Fan D, Liu B, Zhu X, Guo H, Du Y, Liu F, Tian Y. et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res. 2022;32(6):555–569. doi:10.1038/s41422-022-00645-7.