1,661
Views
0
CrossRef citations to date
0
Altmetric
Review

PML Nuclear bodies: the cancer connection and beyond

ORCID Icon & ORCID Icon
Article: 2321265 | Received 08 Dec 2023, Accepted 16 Feb 2024, Published online: 27 Feb 2024

References

  • Hirose T, Ninomiya K, Nakagawa S, et al. A guide to membraneless organelles and their various roles in gene regulation. Nat Rev Mol Cell Biol. 2023;24(4):288–13. doi: 10.1038/s41580-022-00558-8
  • Sexton T, Schober H, Fraser P, et al. Gene regulation through nuclear organization. Nat Struct Mol Biol. 2007;14(11):1049–1055.
  • Zink D, Fischer AH, Nickerson JA. Nuclear structure in cancer cells. Nat Rev Cancer. 2004;4(9):677–687. doi: 10.1038/nrc1430
  • Hsu KS, Kao HY. PML: regulation and multifaceted function beyond tumor suppression. In Cell and bioscience. Vol. 8. Issue 1. BioMed Central Ltd; 2018. doi: 10.1186/s13578-018-0204-8
  • Liu J, Huang Y, Li T, et al. The role of the Golgi apparatus in disease (review). Int J Mol Med. 2021;47(4):38. doi: 10.3892/ijmm.2021.4871
  • Corpet A, Kleijwegt C, Roubille S, et al. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res. 2020;48(21):11890–11912. doi: 10.1093/nar/gkaa828
  • Ryabchenko B, Šroller V, Horníková L, et al. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J. 2023;20(1):82. doi: 10.1186/s12985-023-02049-4
  • Rérolle D, de Thé H. The PML hub: an emerging actor of leukemia therapies. J Exp Med. 2023;220(8). doi: 10.1084/jem.20221213
  • de Thé H, Chomienne C, Lanotte M, et al. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature. 1990;347(6293):558–561. doi: 10.1038/347558a0
  • Borden KLB. Pondering the Promyelocytic Leukemia Protein (PML) Puzzle: Possible Functions for PML Nuclear Bodies. Mol Cell Biol. 2002;22(15):5259–5269. doi: 10.1128/mcb.22.15.5259-5269.2002
  • Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments. EMBO J. 2001;20(9):2140–2151. doi: 10.1093/emboj/20.9.2140
  • Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. REV. IIS. Oncogene. 2001;20(496):7223–7233. doi: 10.1038/sj.onc.1204765
  • Li Y, Ma X, Chen Z, et al. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Nat Commun. 2019;10(1):3789. doi: 10.1038/s41467-019-11746-0
  • Wang P, Benhenda S, Wu H, et al. RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat Commun. 2018;9(1). doi: 10.1038/s41467-018-03498-0
  • Lallemand-Breitenbach V, de Thé H. PML nuclear bodies. Cold Spring Harbor Perspect Biol. 2010;2(5). doi: 10.1101/cshperspect.a000661
  • Missiroli S, Bonora M, Patergnani S, et al. PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep. 2016;16(9):2415–2427. doi: 10.1016/j.celrep.2016.07.082
  • Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays. 2004;26(9):963–977. doi: 10.1002/bies.20089
  • Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007a;8(12):1006–1016. doi: 10.1038/nrm2277
  • Lallemand-Breitenbach V, de Thé H. PML nuclear bodies: from architecture to function. Curr Opinion Cell Biol. 2018;52:154–161. Elsevier Ltd. doi: 10.1016/j.ceb.2018.03.011
  • Niwa-Kawakita M, Ferhi O, Soilihi H, et al. PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med. 2017;214(11):3197–3206. doi: 10.1084/jem.20160301
  • Sahin U, Ferhi O, Jeanne M, et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Bio. 2014a;204(6):931–945. doi: 10.1083/jcb.201305148
  • Lallemand-Breitenbach V, Zhu J, Puvion F, et al. Role of promyelocytic leukemia (pml) sumolation in nuclear body formation, 11s Proteasome Recruitment, and as2O3-induced pml or pml/Retinoic acid receptor α degradation. J Exp Med The. 2001a;193(12):1361–1372. http://www.jem.org/cgi/content/full/193/12/1361 Rockefeller University Press.
  • Lang M, Jegou T, Chung I, et al. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci. 2010;123(3):392–400. doi: 10.1242/jcs.053496
  • Lu J, Qian J, Xu Z, et al. Emerging roles of liquid–liquid phase separation in cancer: from protein aggregation to immune-associated signaling. Front Cell Dev Biol 2021;9. Frontiers Media S.A. 10.3389/fcell.2021.631486.
  • Frottin F, Schueder F, Tiwary S, et al. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365(6451):342–347. doi: 10.1126/science.aaw9157
  • Simon JR, Eghtesadi SA, Dzuricky M, et al. Engineered ribonucleoprotein granules inhibit translation in protocells. Molecular Cell. 2019;75(1):66–75.e5. doi: 10.1016/j.molcel.2019.05.010
  • Zhu L, Richardson TM, Wacheul L, et al. Controlling the material properties and rRNA processing function of the nucleolus using light. Proc Nat Acad Sci. 2019;116(35):17330–17335. doi: 10.1073/pnas.1903870116
  • Weber SC, Brangwynne CP. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr Biol. 2015;25(5):641–646. doi: 10.1016/j.cub.2015.01.012
  • Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357(6357): American Association for the Advancement of Science. doi: 10.1126/science.aaf4382
  • Bercier P, Wang QQ, Zang N, et al. Structural basis of PML/RARA oncoprotein targeting by arsenic unravels a cysteine rheostat controlling PML body assembly and function. Cancer Discovery. 2023;13(12):2548–2565. doi: 10.1158/2159-8290.CD-23-0453
  • Zhang X. Arsenic Trioxide Controls the Fate of the PML-RARα Oncoprotein by Directly Binding PML. Science. 2010;328(5975):240–243. doi: 10.1126/science.1183424
  • Kamitani T, Kito K, Nguyen HP, et al. (1998). Identification Of Three Major Sentrinization Sites In PML*. http://www.jbc.org
  • Sahin U, Ferhi O, Jeanne M, et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Bio. 2014b;204(6):931–945. doi: 10.1083/jcb.201305148
  • Liu ST, Lu GY, Hsu YJ, et al. Dual roles for lysine 490 of promyelocytic leukemia protein in the transactivation of glucocorticoid receptor-interacting protein 1. Biochim Biophys Acta, Mol Cell Res. 2013;1833(8):1799–1810.
  • Barroso-Gomila O, Trulsson F, Muratore V, et al. Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun. 2021;12(1). doi: 10.1038/s41467-021-26807-6
  • Weidtkamp-Peters S, Lenser T, Negorev D, et al. Dynamics of component exchange at PML nuclear bodies. J Cell Sci. 2008;121(16):2731–2743. doi: 10.1242/jcs.031922
  • Lallemand-Breitenbach V, Zhu J, Puvion F, et al. Role of Promyelocytic Leukemia (Pml) Sumolation in Nuclear Body Formation, 11s Proteasome Recruitment, and as2O3-Induced Pml or Pml/Retinoic Acid Receptor α Degradation. J Exp Med ? The. 2001b;193(12):1361–1372. http://www.jem.org/cgi/content/full/193/12/1361 Rockefeller University Press.
  • Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007b;8(12):1006–1016. doi: 10.1038/nrm2277
  • Damme EV, Laukens K, Dang TH, et al. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci. 2010;6(Issue 1):51–67. http://www.biolsci.org51
  • Tessier S, Ferhi O, Geoffroy MC, et al. Exploration of nuclear body-enhanced sumoylation reveals that PML represses 2-cell features of embryonic stem cells. Nat Commun. 2022a;13(1). doi: 10.1038/s41467-022-33147-6
  • Jaffray EG, Tatham MH, Mojsa B, et al. The p97/VCP segregase is essential for arsenic-induced degradation of PML and PML-RARA. J Cell Bio. 2023;222(4). doi: 10.1083/jcb.202201027
  • Dassouki Z, Sahin U, El Hajj H, et al. ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent tax degradation. Blood. 2015;125(3):474–482. doi: 10.1182/blood-2014-04-572750
  • Marçais A, Cook L, Witkover A, et al. Arsenic trioxide (As2O3) as a maintenance therapy for adult T cell leukemia/lymphoma. Retrovirology. 2020;17(1):5. doi: 10.1186/s12977-020-0513-y
  • Jeanne M, Lallemand-Breitenbach V, Ferhi O, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 2010;18(1):88–98. doi: 10.1016/j.ccr.2010.06.003
  • Terris B, Baldin V, Dubois S, et al. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res. 1995;55(7):1590–1597.
  • Sablina AA, Budanov AV, Ilyinskaya GV, et al. The antioxidant function of the p53 tumor suppressor. Nature Med. 2005;11(12):1306–1313. doi: 10.1038/nm1320
  • Weerapana E, Wang C, Simon GM, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468(7325):790–795. doi: 10.1038/nature09472
  • Wu H-C, Rérolle D, Berthier C, et al. Actinomycin D targets NPM1c-primed mitochondria to restore PML-Driven senescence in AML therapy. Cancer Discovery. 2021;11(12):3198–3213. doi: 10.1158/2159-8290.CD-21-0177
  • Wang ZG, Ruggero D, Ronchetti S, et al. PML is essential for multiple apoptotic pathways. Nature Genet. 1998;20(3):266–272. doi: 10.1038/3073
  • Gurrieri C, Capodieci P, Bernardi R, et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. JNCI. 2004;96(4):269–279.
  • Scaglioni PP, Yung TM, Cai LF, et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell. 2006;126(2):269–283. doi: 10.1016/j.cell.2006.05.041
  • Bernardi R, Papa A, Pandolfi PP. Regulation of apoptosis by PML and the PML-NBs. Oncogene. 2008;27(48):6299–6312. doi: 10.1038/onc.2008.305
  • Everett RD, Chelbi-Alix MK. PML and PML nuclear bodies: implications in antiviral defence. Biochimie. 2007;89(Issues 6–7):819–830. doi: 10.1016/j.biochi.2007.01.004
  • Krieghoff-Henning E, Hofmann TG. Role of nuclear bodies in apoptosis signalling. Biochim Biophys Acta, Mol Cell Res. 2008;1783(11):2185–2194. doi: 10.1016/j.bbamcr.2008.07.002
  • Salsman J, Stathakis A, Parker E, et al. PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4. Sci Rep. 2017;7(1). doi: 10.1038/srep45038
  • Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007c;8(12):1006–1016. doi: 10.1038/nrm2277
  • Ivanschitz L, Takahashi Y, Jollivet F, et al. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci USA. 2015;112(46):14278–14283. doi: 10.1073/pnas.1507540112
  • Bischof O, Kim S-H, Irving J, et al. Regulation and localization of the bloom syndrome protein in response to DNA damage. J Cell Bio. 2001;153(Issue 2):367–380. http://www.jcb.org/cgi/content/full/153/2/367
  • Stepp WH, Meyers JM, Mcbride AA, et al. Sp100 provides intrinsic immunity against human papillomavirus infection. MBio. 2013;4(6). doi: 10.1128/mBio.00845
  • Xu P, Roizman B. The SP100 component of ND10 enhances accumulation of PML and suppresses replication and the assembly of HSV replication compartments. Proc Natl Acad Sci USA. 2017;114(19):E3823–E3829. doi: 10.1073/pnas.1703395114
  • Culjkovic B, Topisirovic I, Skrabanek L, et al. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Bio. 2006;175(3):415–426. doi: 10.1083/jcb.200607020
  • Lai H-K, Borden K. The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene. 2000;19(13):1623–1634. doi: 10.1038/sj.onc.1203473
  • Bernardi R, Papa A, Egia A, et al. Pml represses tumour progression through inhibition of mTOR. EMBO Mol Med. 2011;3(5):249–257. doi: 10.1002/emmm.201100130
  • Lång A, Lång E, Bøe SO. PML Bodies in Mitosis. Cells. 2019;8(8):893. doi: 10.3390/cells8080893
  • Vernier M, Bourdeau V, Gaumont-Leclerc MF, et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 2011;25(1):41–50. doi: 10.1101/gad.1975111
  • Fracassi C, Ugge’ M, Abdelhalim M, et al. PML modulates epigenetic composition of chromatin to regulate expression of pro-metastatic genes in triple-negative breast cancer. Nucleic Acids Res. 2023;51(20):11024–11039. doi: 10.1093/nar/gkad819
  • Delbarre E, Ivanauskiene K, Küntziger T, et al. DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. Genome Res. 2013;23(3):440–451. doi: 10.1101/gr.142703.112
  • Salomoni P. The PML-interacting protein DAXX: histone loading gets into the picture. Front Oncol. 2013;Vol. 3. doi: 10.3389/fonc.2013.00152
  • Delbarre E, Ivanauskiene K, Spirkoski J, et al. PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX. Genome Res. 2017;27(6):913–921. doi: 10.1101/gr.215830.116
  • Pchelintsev NA, McBryan T, Rai TS, et al. Placing the HIRA histone chaperone complex in the chromatin landscape. Cell Rep. 2013;3(4):1012–1019. doi: 10.1016/j.celrep.2013.03.026
  • Kleijwegt C, Bressac F, Seurre C, et al. Interplay between PML NBs and HIRA for H3.3 dynamics following type I interferon stimulus. Elife. 2023;12. doi: 10.7554/eLife.80156
  • Huang SY, Naik MT, Chang CF, et al. The B-box 1 dimer of human promyelocytic leukemia protein. J Biomol NMR. 2014;60(4):275–281. doi: 10.1007/s10858-014-9869-4
  • Khan M, Nomura T, Kim H, et al. Role of PML and PML-RARalpha in mad-mediated transcriptional repression. Molecular Cell. 2001;7(6):1233–1243. www.molecule.org/cgi/content/full/7/6/1233/DC1
  • Lin DY, Lai MZ, Ann DK, et al. Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J Biol Chem. 2003;278(18):15958–15965. doi: 10.1074/jbc.M300387200
  • Trier I, Black EM, Joo YK, et al. ATR protects centromere identity by promoting DAXX association with PML nuclear bodies. Cell Rep. 2023;42(5):112495. doi: 10.1016/j.celrep.2023.112495
  • Tessier S, Ferhi O, Geoffroy MC, et al. Exploration of nuclear body-enhanced sumoylation reveals that PML represses 2-cell features of embryonic stem cells. Nat Commun. 2022b;13(1). doi: 10.1038/s41467-022-33147-6
  • Carracedo A, Rousseau D, Douris N, et al. The promyelocytic leukemia protein is upregulated in conditions of obesity and liver steatosis. Ivyspring International Publisher. Int J Biol Sci. 2015;11(6):629–632. doi: 10.7150/ijbs.11615
  • Ito K, Carracedo A, Weiss D, et al. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nature Med. 2012;18(9):1350–1358. doi: 10.1038/nm.2882
  • Ito K, Bernardi R, Morotti A, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453(7198):1072–1078. doi: 10.1038/nature07016
  • Carracedo A, Weiss D, Leliaert AK, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Investig. 2012;122(9):3088–3100. doi: 10.1172/JCI62129
  • Ohsaki Y, Kawai T, Yoshikawa Y, et al. PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Bio. 2016;212(1):29–38. doi: 10.1083/jcb.201507122
  • Lee J, Salsman J, Foster J, et al. Lipid-associated PML structures assemble nuclear lipid droplets containing CCTα and Lipin1. Life Sci Alliance. 2020;3(8):e202000751. doi: 10.26508/LSA.202000751
  • McPhee MJ, Salsman J, Foster J, et al. Running ‘LAPS’ around nLD: nuclear lipid droplet form and function. Front Cell Dev Biol 2022;10. Frontiers Media S.A 10.3389/fcell.2022.837406.
  • Gentric G, Kieffer Y, Mieulet V, et al. PML-Regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers. Cell Metab. 2019;29(1):156–173.e10. doi: 10.1016/j.cmet.2018.09.002
  • Dellaire G, Ching RW, Ahmed K, et al. Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR. J Cell Bio. 2006;175(1):55–66. doi: 10.1083/jcb.200604009
  • Attwood KM, Salsman J, Chung D, et al. PML isoform expression and DNA break location relative to PML nuclear bodies impacts the efficiency of homologous recombination. Biochem Cell Biol. 2020;98(3):314–326. doi: 10.1139/bcb-2019-0115
  • Voisset E, Moravcsik E, Stratford EW, et al. Pml nuclear body disruption cooperates in APL pathogenesis and impairs DNA damage repair pathways in mice. Blood. 2018;131(6):636–648. doi: 10.1182/blood-2017-07-794784
  • Vancurova M, Hanzlikova H, Knoblochova L, et al. PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. DNA Repair. 2019;78:114–127. doi: 10.1016/j.dnarep.2019.04.001
  • Claessens LA, Verlaan-de Vries M, de Graaf IJ, et al. SENP6 regulates localization and nuclear condensation of DNA damage response proteins by group deSumoylation. Nat Commun. 2023;14(1):5893. doi: 10.1038/s41467-023-41623-w
  • Liu S, Atkinson E, Paulucci-Holthauzen A, et al. A CK2 and SUMO-dependent, PML NB-involved regulatory mechanism controlling BLM ubiquitination and G-quadruplex resolution. Nat Commun. 2023;14(1):6111. doi: 10.1038/s41467-023-41705-9
  • Kordon MM, Szczurek A, Berniak K, et al. PML‐like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication‐based single‐strand breaks. FASEB J. 2019;33(2):2301–2313. doi: 10.1096/fj.201801379R
  • Granger MP, Wright WE, Shay JW. Telomerase in cancer and aging. Crit Rev Oncol Hematol. 2002;41(1):29–40. doi: 10.1016/s1040-8428(01)00188-3
  • Lamm N, Rogers S, Cesare AJ. Chromatin mobility and relocation in DNA repair. Trends Cell Biol. 2021;31(10):843–855. doi: 10.1016/j.tcb.2021.06.002
  • Heaphy CM, Subhawong AP, Hong S-M, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 2011;179(4):1608–1615. doi: 10.1016/j.ajpath.2011.06.018
  • Loe TK, Li JSZ, Zhang Y, et al. Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres. Genes Dev. 2020;34(9–10):650–662. doi: 10.1101/gad.333963.119
  • Osterwald S, Deeg KI, Chung I, et al. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. J Cell Sci. 2015;128(10):1887–1900. doi: 10.1242/jcs.148296
  • Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–330. doi: 10.1038/nrg2763
  • Wu K, Higashi N, Hansen ER, et al. Telomerase activity is increased and telomere length shortened in T cells from blood of patients with atopic dermatitis and psoriasis. Journal Of Immunology. 2000;165(8):4742–4747. doi: 10.4049/jimmunol.165.8.4742
  • Zhang J-M, Yadav T, Ouyang J, et al. Alternative lengthening of telomeres through two distinct break-induced replication pathways. Cell Rep. 2019;26(4):955–968.e3. doi: 10.1016/j.celrep.2018.12.102
  • Zhang J-M, Genois M-M, Ouyang J, et al. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Molecular Cell. 2021;81(5):1027–1042.e4. doi: 10.1016/j.molcel.2020.12.030
  • Liebl MC, Hofmann TG. Regulating the p53 tumor suppressor network at PML biomolecular condensates. Cancers (Basel). 2022;14(19):4549. doi: 10.3390/cancers14194549
  • Babamohamadi M, Babaei E, Ahmed Salih B, et al. Recent findings on the role of wild-type and mutant p53 in cancer development and therapy. Front Mol Biosci. 2022;9:9. doi: 10.3389/fmolb.2022.903075
  • Wan J, Block S, Scribano CM, et al. Mad1 destabilizes p53 by preventing PML from sequestering MDM2. Nat Commun. 2019;10(1):1540. doi: 10.1038/s41467-019-09471-9
  • Fogal V. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 2000;19(22):6185–6195. doi: 10.1093/emboj/19.22.6185
  • Möller A, Seyin Sirma H, Hofmann TG, et al. PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains 1. Cancer Res. 2003;63(15):4310–4.
  • Rokudai S, Laptenko O, Arnal SM, et al. MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Nat Acad Sci. 2013;110(10):3895–3900. doi: 10.1073/pnas.1300490110
  • Sung KS, Lee YA, Kim ET, et al. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53. Exp Cell Res. 2011;317(7):1060–1070. doi: 10.1016/j.yexcr.2010.12.016
  • Willms A, Schupp H, Poelker M, et al. TRAIL-receptor 2-a novel negative regulator of p53. Cell Death Dis. 2021;12(8):757. doi: 10.1038/s41419-021-04048-1
  • Ferbeyre G, De Stanchina E, Querido E, et al. (2000a). PML Is Induced By Oncogenic Ras And Promotes Premature Senescence. www.genomesystems.com
  • Ferbeyre G, De Stanchina E, Querido E, et al. (2000b). PML Is Induced By Oncogenic Ras And Promotes Premature Senescence. www.genomesystems.com
  • Pearson M, Carbone R, Sebastiani C, et al. (2000). PML Regulates p53 Acetylation And Premature Senescence Induced By Oncogenic Ras. www.nature.com
  • Moiseeva O, Mallette FA, Mukhopadhyay UK, et al. DNA damage signaling and p53-dependent senescence after prolonged β-interferon stimulation. ?Mol Biol Cell. 2006;17(4):1583–1592. doi: 10.1091/mbc.E05-09
  • Ivanschitz L, De Thé H, Le Bras M. PML, SUMOylation, and senescence. Front Oncol 2013;Vol. 3. JUL 10.3389/fonc.2013.00171.
  • Bischof O, Kirsh O, Pearson M, et al. Deconstructing PML-induced premature senescence. EMBO J. 2002;21(13):3358–3369. doi: 10.1093/emboj/cdf341
  • Mallette FA, Goumard S, Gaumont-Leclerc MF, et al. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene. 2004;23(1):91–99. doi: 10.1038/sj.onc.1206886
  • Ma X, Zhang Y, Zhang Y, et al. A stress-induced cilium-to-PML-NB route drives senescence initiation. Nat Commun. 2023;14(1):1840. doi: 10.1038/s41467-023-37362-7
  • Dagher T, Maslah N, Edmond V, et al. JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med. 2021;218(2). doi: 10.1084/jem.20201268
  • Alcalay M, Tomassoni L, Colombo E, et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol. 1998;18(Issue 2). doi: 10.1128/MCB.18.2.1084