1,403
Views
0
CrossRef citations to date
0
Altmetric
Basic Research Article

Biological embedding of early trauma: the role of higher prefrontal synaptic strength

Inserción biológica del trauma temprano: el papel de una mayor fuerza sináptica prefrontal

早期创伤的生物嵌入:更大的前额突触强度的作用

ORCID Icon, , , , &
Article: 2246338 | Received 29 Oct 2022, Accepted 27 Jun 2023, Published online: 29 Aug 2023

References

  • Abdallah, C. G., Averill, C. L., Ramage, A. E., Averill, L. A., Goktas, S., Nemati, S., Krystal, J. H., Roache, J. D., Resick, P. A., & Young-McCaughan, S. (2019). Salience network disruption in US Army soldiers with posttraumatic stress disorder. Chronic Stress, 3, https://doi.org/10.1177/2470547019850467
  • Abdallah, C. G., De Feyter, H. M., Averill, L. A., Jiang, L., Averill, C. L., Chowdhury, G. M., Purohit, P., de Graaf, R. A., Esterlis, I., & Juchem, C. (2018). The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology, 43(10), 2154–2160. https://doi.org/10.1038/s41386-018-0136-3
  • Abdallah, C. G., Hannestad, J., Mason, G. F., Holmes, S. E., DellaGioia, N., Sanacora, G., Jiang, L., Matuskey, D., Satodiya, R., & Gasparini, F. (2017). Metabotropic glutamate receptor 5 and glutamate involvement in major depressive disorder: A multimodal imaging study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(5), 449–456. https://doi.org/10.1016/j.bpsc.2017.03.019
  • Abdallah, C. G., Jackowski, A., Sato, J. R., Mao, X., Kang, G., Cheema, R., Coplan, J. D., Mathew, S. J., & Shungu, D. C. (2015). Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. European Neuropsychopharmacology, 25(8), 1082–1090. https://doi.org/10.1016/j.euroneuro.2015.04.025
  • Abdallah, C. G., & Mason, G. F. (2021). Novel approaches to estimate prefrontal synaptic strength in vivo in humans: of relevance to depression, schizophrenia, and ketamine. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 47(1), 399–400. https://doi.org/10.1038/s41386-021-01122-2
  • Abdallah, C. G., Sanacora, G., Duman, R. S., & Krystal, J. H. (2018). The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacology & Therapeutics, 190, 148–158. https://doi.org/10.1016/j.pharmthera.2018.05.010
  • Abdallah, C., Wrocklage, K., Averill, C., Akiki, T., Schweinsburg, B., Roy, A., Martini, B., Southwick, S., Krystal, J., & Scott, J. (2017). Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach. Translational psychiatry, 7(2), e1045–e1045. https://doi.org/10.1038/tp.2017.12
  • Akiki, T. J., & Abdallah, C. G. (2019). Are there effective psychopharmacologic treatments for PTSD? The Journal of Clinical Psychiatry, 80(3), 18ac12473
  • Akiki, T. J., Averill, C. L., & Abdallah, C. G. (2017). A network-based neurobiological model of PTSD: Evidence from structural and functional neuroimaging studies. Current Psychiatry Reports, 19(1), 1–10. https://doi.org/10.1007/s11920-017-0753-2
  • Akiki, T. J., Averill, C. L., Wrocklage, K. M., Schweinsburg, B., Scott, J. C., Martini, B., Averill, L. A., Southwick, S. M., Krystal, J. H., & Abdallah, C. G. (2017). The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities. Chronic Stress, 1. https://doi.org/10.1177/2470547017724069
  • Akiki, T. J., Averill, C. L., Wrocklage, K. M., Scott, J. C., Averill, L. A., Schweinsburg, B., Alexander-Bloch, A., Martini, B., Southwick, S. M., & Krystal, J. H. (2018). Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach. Neuroimage, 176, 489–498. https://doi.org/10.1016/j.neuroimage.2018.05.005
  • Aleksandrova, L. R., & Phillips, A. G. (2021). Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends in Pharmacological Sciences, 42(11), 929–942. https://doi.org/10.1016/j.tips.2021.08.003
  • Averill, L. A., Abdallah, C. G., Fenton, L. R., Fasula, M. K., Jiang, L., Rothman, D. L., Mason, G. F., & Sanacora, G. (2020). Early life stress and glutamate neurotransmission in major depressive disorder. European Neuropsychopharmacology, 35, 71–80. https://doi.org/10.1016/j.euroneuro.2020.03.015
  • Averill, L. A., Averill, C. L., Kelmendi, B., Abdallah, C. G., & Southwick, S. M. (2018). Stress response modulation underlying the psychobiology of resilience. Current Psychiatry Reports, 20(1), 1–13. https://doi.org/10.1007/s11920-018-0865-3
  • Averill, L. A., Jiang, L., Purohit, P., Coppoli, A., Averill, C. L., Roscoe, J., Kelmendi, B., De Feyter, H. M., de Graaf, R. A., & Gueorguieva, R. (2022). Prefrontal glutamate neurotransmission in PTSD: A novel approach to estimate synaptic strength in vivo in humans. Chronic Stress, 6, 1–9. https://doi.org/10.1177/24705470221092734
  • Averill, L. A., Purohit, P., Averill, C. L., Boesl, M. A., Krystal, J. H., & Abdallah, C. G. (2017). Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neuroscience Letters, 649, 147–155. https://doi.org/10.1016/j.neulet.2016.11.064
  • Bermudo-Soriano, C. R., Perez-Rodriguez, M. M., Vaquero-Lorenzo, C., & Baca-Garcia, E. (2012). New perspectives in glutamate and anxiety. Pharmacology Biochemistry and Behavior, 100(4), 752–774. https://doi.org/10.1016/j.pbb.2011.04.010
  • Bovin, M. J., Marx, B. P., Weathers, F. W., Gallagher, M. W., Rodriguez, P., Schnurr, P. P., & Keane, T. M. (2016). Psychometric properties of the PTSD checklist for diagnostic and statistical manual of mental disorders–fifth edition (PCL-5) in Veterans. Psychological Assessment, 28(11), 1379. https://doi.org/10.1037/pas0000254
  • Bremner, J. D., Vermetten, E., & Mazure, C. M. (2000). Development and preliminary psychometric properties of an instrument for the measurement of childhood trauma: The Early Trauma Inventory. Depression and Anxiety, 12(1), 1–12. doi:10.1002/1520-6394(2000)12:1<1::AID-DA1>3.0.CO;2-W
  • Campioni, M. R., Xu, M., & McGehee, D. S. (2009). Stress-induced changes in nucleus accumbens glutamate synaptic plasticity. Journal of Neurophysiology, 101(6), 3192–3198. https://doi.org/10.1152/jn.91111.2008
  • Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67(5), 319. https://doi.org/10.1037/0022-3514.67.5.790
  • Catlow, B. J., Song, S., Paredes, D. A., Kirstein, C. L., & Sanchez-Ramos, J. (2013). Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Experimental Brain Research, 228(4), 481–491. https://doi.org/10.1007/s00221-013-3579-0
  • Chang, Y. C., Kim, H.-W., Rapoport, S. I., & Rao, J. S. (2008). Chronic NMDA administration increases neuroinflammatory markers in rat frontal cortex: Cross-talk between excitotoxicity and neuroinflammation. Neurochemical Research, 33(11), 2318–2323. https://doi.org/10.1007/s11064-008-9731-8
  • Cross, D., Fani, N., Powers, A., & Bradley, B. (2017). Neurobiological development in the context of childhood trauma. Clinical Psychology: Science and Practice, 24(2), 111. https://doi.org/10.1111/cpsp.12198
  • Daftary, S. S., Panksepp, J., Dong, Y., & Saal, D. B. (2009). Stress-induced, glucocorticoid-dependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons. Neuroscience Letters, 452(3), 273–276. https://doi.org/10.1016/j.neulet.2009.01.070
  • Dannlowski, U., Kugel, H., Huber, F., Stuhrmann, A., Redlich, R., Grotegerd, D., Dohm, K., Sehlmeyer, C., Konrad, C., & Baune, B. T. (2013). Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Human Brain Mapping, 34(11), 2899–2909. https://doi.org/10.1002/hbm.22112
  • Faye, C., McGowan, J. C., Denny, C. A., & David, D. J. (2018). Neurobiological mechanisms of stress resilience and implications for the aged population. Current Neuropharmacology, 16(3), 234–270. https://doi.org/10.2174/1570159X15666170818095105
  • Fortress, A. M., Smith, I. M., & Pang, K. C. (2018). Ketamine facilitates extinction of avoidance behavior and enhances synaptic plasticity in a rat model of anxiety vulnerability: Implications for the pathophysiology and treatment of anxiety disorders. Neuropharmacology, 137, 372–381. https://doi.org/10.1016/j.neuropharm.2018.05.009
  • Foster, T., Gagne, J., & Massicotte, G. (1996). Mechanism of altered synaptic strength due to experience: Relation to long-term potentiation. Brain Research, 736(1-2), 243–250. https://doi.org/10.1016/0006-8993(96)00707-X
  • Gerin, M. I., Hanson, E., Viding, E., & McCrory, E. J. (2019). A review of childhood maltreatment, latent vulnerability and the brain: Implications for clinical practice and prevention. Adoption & Fostering, 43(3), 310–328. https://doi.org/10.1177/0308575919865356
  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., Herman, D. H., Clasen, L. S., & Toga, A. W. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101
  • Grassi-Oliveira, R., Kristensen, C. H., Brietzke, E., & Coelho, R. (2015). Neurobiology of child maltreatment. Mental health issues of child maltreatment, STM Learning.
  • Harnett, N. G., Wood, K. H., Ference III, E. W., Reid, M. A., Lahti, A. C., Knight, A. J., & Knight, D. C. (2017). Glutamate/glutamine concentrations in the dorsal anterior cingulate vary with Post-Traumatic Stress Disorder symptoms. Journal of Psychiatric Research, 91, 169–176. https://doi.org/10.1016/j.jpsychires.2017.04.010
  • Harvey, B. H., & Shahid, M. (2012). Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacology Biochemistry and Behavior, 100(4), 775–800. https://doi.org/10.1016/j.pbb.2011.06.014
  • Hebb, D. O. (1949). The first stage of perception: growth of the assembly. In The Organization of Behavior (pp. xi-xix, 60-78). Wiley. https://doi.org/10.7551/mitpress/4943.003.0006
  • Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49(12), 1023–1039. https://doi.org/10.1016/S0006-3223(01)01157-X
  • Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B., & Thompson, S. M. (2021). Harnessing psilocybin: Antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proceedings of the National Academy of Sciences, 118(17), e2022489118. https://doi.org/10.1073/pnas.2022489118
  • Hilton, G. D., Nunez, J. L., Bambrick, L., Thompson, S. M., & McCarthy, M. M. (2006). Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol. European Journal of Neuroscience, 24(10), 3008–3016. https://doi.org/10.1111/j.1460-9568.2006.05159.x
  • Hoffman, R. E. (1987). Computer simulations of neural information processing and the schizophrenia-mania dichotomy. Archives of General Psychiatry, 44(2), 178–188. https://doi.org/10.1001/archpsyc.1987.01800140090014
  • Holmes, S. E., Girgenti, M. J., Davis, M. T., Pietrzak, R. H., DellaGioia, N., Nabulsi, N., Matuskey, D., Southwick, S., Duman, R. S., & Carson, R. E. (2017). Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proceedings of the National Academy of Sciences, 114(31), 8390–8395. https://doi.org/10.1073/pnas.1701749114
  • Holmes, S. E., Scheinost, D., Finnema, S. J., Naganawa, M., Davis, M. T., DellaGioia, N., Nabulsi, N., Matuskey, D., Angarita, G. A., & Pietrzak, R. H. (2019). Lower synaptic density is associated with depression severity and network alterations. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-018-07882-8
  • Jonassaint, C. R., Boyle, S. H., Williams, R. B., Mark, D. B., Siegler, I. C., & Barefoot, J. C. (2007). Facets of openness predict mortality in patients with cardiac disease. Psychosomatic Medicine, 69(4), 319–322. https://doi.org/10.1097/PSY.0b013e318052e27d
  • Kessler, R. C., McLaughlin, K. A., Green, J. G., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., Aguilar-Gaxiola, S., Alhamzawi, A. O., Alonso, J., & Angermeyer, M. (2010). Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. British Journal of Psychiatry, 197(5), 378–385. https://doi.org/10.1192/bjp.bp.110.080499
  • Krystal, J. H., Abdallah, C. G., Averill, L. A., Kelmendi, B., Harpaz-Rotem, I., Sanacora, G., Southwick, S. M., & Duman, R. S. (2017). Synaptic loss and the pathophysiology of PTSD: implications for ketamine as a prototype novel therapeutic. Current Psychiatry Reports, 19(1), 1–11. https://doi.org/10.1007/s11920-017-0753-2
  • Krystal, J. H., Mathew, S. J., Souza, D., Garakani, D. C., Gunduz-Bruce, A., Charney, H., & S, D. (2010). Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs, 24(8), 669–693. https://doi.org/10.2165/11533230-000000000-00000
  • Lally, N., An, L., Banerjee, D., Niciu, M. J., Luckenbaugh, D. A., Richards, E. M., Roiser, J. P., Shen, J., Zarate Jr, C. A., & Nugent, A. C. (2016). Reliability of 7 T 1H-MRS measured human prefrontal cortex glutamate, glutamine, and glutathione signals using an adapted echo time optimized PRESS sequence: a between-and within-sessions investigation. Journal of Magnetic Resonance Imaging, 43(1), 88–98. https://doi.org/10.1002/jmri.24970
  • Lebon, V., Petersen, K. F., Cline, G. W., Shen, J., Mason, G. F., Dufour, S., Behar, K. L., Shulman, G. I., & Rothman, D. L. (2002). Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: Elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. The Journal of Neuroscience, 22(5), 1523–1531. https://doi.org/10.1523/JNEUROSCI.22-05-01523.2002
  • Letourneau, E. J., Brown, D. S., Fang, X., Hassan, A., & Mercy, J. A. (2018). The economic burden of child sexual abuse in the United States. Child Abuse & Neglect, 79, 413–422. https://doi.org/10.1016/j.chiabu.2018.02.020
  • Li, Y., Qiao, L., Sun, J., Wei, D., Li, W., Qiu, J., Zhang, Q., & Shi, H. (2014). Gender-specific neuroanatomical basis of behavioral inhibition/approach systems (BIS/BAS) in a large sample of young adults: A voxel-based morphometric investigation. Behavioural Brain Research, 274, 400–408. https://doi.org/10.1016/j.bbr.2014.08.020
  • Littlefield, A. K., Sher, K. J., & Steinley, D. (2010). Developmental trajectories of impulsivity and their association with alcohol use and related outcomes during emerging and young adulthood I. Alcoholism: Clinical and Experimental Research, 34(8), 1409–1416. https://doi.org/10.1111/j.1530-0277.2010.01224.x
  • Logue, J., Schoepfer, K., Guerrero, A. B., Zhou, Y., & Kabbaj, M. (2021). Sex-specific effects of social isolation stress and ketamine on hippocampal plasticity. Neuroscience Letters, 766, 136301. https://doi.org/10.1016/j.neulet.2021.136301
  • Maren, S., & Holmes, A. (2016). Stress and fear extinction. Neuropsychopharmacology, 41(1), 58–79. https://doi.org/10.1038/npp.2015.180
  • McCrory, E. J., Gerin, M. I., & Viding, E. (2017). Annual research review: Childhood maltreatment, latent vulnerability and the shift to preventative psychiatry – The contribution of functional brain imaging. Journal of Child Psychology and Psychiatry, 58(4), 338–357. https://doi.org/10.1111/jcpp.12713
  • McCrory, E. J., & Viding, E. (2015). The theory of latent vulnerability: Reconceptualizing the link between childhood maltreatment and psychiatric disorder. Development and Psychopathology, 27(2), 493–505. https://doi.org/10.1017/S0954579415000115
  • McLaughlin, K. A., Colich, N. L., Rodman, A. M., & Weissman, D. G. (2020). Mechanisms linking childhood trauma exposure and psychopathology: A transdiagnostic model of risk and resilience. BMC Medicine, 18(1), 1–11. https://doi.org/10.1186/s12916-019-1443-1
  • Miller, O. H., Yang, L., Wang, C.-C., Hargroder, E. A., Zhang, Y., Delpire, E., & Hall, B. J. (2014). GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife, 3, e03581. https://doi.org/10.7554/eLife.03581
  • Miskolczi, C., Halász, J., & Mikics, É. (2019). Changes in neuroplasticity following early-life social adversities: The possible role of brain-derived neurotrophic factor. Pediatric Research, 85(2), 225–233. https://doi.org/10.1038/s41390-018-0205-7
  • Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience & Biobehavioral Reviews, 56, 330–344. https://doi.org/10.1016/j.neubiorev.2015.07.014
  • Murrough, J. W., Abdallah, C. G., Anticevic, A., Collins, K. A., Geha, P., Averill, L. A., Schwartz, J., DeWilde, K. E., Averill, C., & Jia-Wei Yang, G. (2016). Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Human Brain Mapping, 37(9), 3214–3223. https://doi.org/10.1002/hbm.23235
  • Newbury, J. B., Arseneault, L., Moffitt, T. E., Caspi, A., Danese, A., Baldwin, J. R., & Fisher, H. L. (2018). Measuring childhood maltreatment to predict early-adult psychopathology: Comparison of prospective informant-reports and retrospective self-reports. Journal of Psychiatric Research, 96, 57–64. https://doi.org/10.1016/j.jpsychires.2017.09.020
  • Nichter, B., Norman, S., Haller, M., & Pietrzak, R. H. (2019). Psychological burden of PTSD, depression, and their comorbidity in the US veteran population: Suicidality, functioning, and service utilization. Journal of Affective Disorders, 256, 633–640. https://doi.org/10.1016/j.jad.2019.06.072
  • O'Brien, B., Lijffijt, M., Lee, J., Kim, Y. S., Wells, A., Murphy, N., Ramakrishnan, N., Swann, A. C., & Mathew, S. J. (2021). Distinct trajectories of antidepressant response to intravenous ketamine. Journal of Affective Disorders, 286, 320–329. https://doi.org/10.1016/j.jad.2021.03.006
  • Oquendo, M. A., Friend, J. M., Halberstam, B., Brodsky, B. S., Burke, A. K., Grunebaum, M. F., Malone, K. M., & Mann, J. J. (2003). Association of comorbid posttraumatic stress disorder and major depression with greater risk for suicidal behavior. American Journal of Psychiatry, 160(3), 580–582. https://doi.org/10.1176/appi.ajp.160.3.580
  • Park, M., Kim, C. H., Jo, S., Kim, E. J., Rhim, H., Lee, C. J., Kim, J. J., & Cho, J. (2015). Chronic stress alters spatial representation and bursting patterns of place cells in behaving mice. Scientific Reports, 5(1), 16235. https://doi.org/10.1038/srep16235
  • Pechtel, P., Lyons-Ruth, K., Anderson, C. M., & Teicher, M. H. (2014). Sensitive periods of amygdala development: The role of maltreatment in preadolescence. Neuroimage, 97, 236–244. https://doi.org/10.1016/j.neuroimage.2014.04.025
  • Pignatelli, M., Tejeda, H. A., Barker, D. J., Bontempi, L., Wu, J., Lopez, A., Palma Ribeiro, S., Lucantonio, F., Parise, E. M., & Torres-Berrio, A. (2021). Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Molecular Psychiatry, 26(6), 1860–1879. https://doi.org/10.1038/s41380-020-0686-8
  • Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., Milad, M. R., & Liberzon, I. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience, 13(11), 769–787. https://doi.org/10.1038/nrn3339
  • Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2012). The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience, 13(1), 22–37. https://doi.org/10.1038/nrn3138
  • Puetz, V. B., Kohn, N., Dahmen, B., Zvyagintsev, M., Schüppen, A., Schultz, R. T., Heim, C. M., Fink, G. R., Herpertz-Dahlmann, B., & Konrad, K. (2014). Neural response to social rejection in children with early separation experiences. Journal of the American Academy of Child & Adolescent Psychiatry, 53(12), 1328–1337. https://doi.org/10.1016/j.jaac.2014.09.004
  • Reilly, T. J., MacGillivray, S. A., Reid, I. C., & Cameron, I. M. (2015). Psychometric properties of the 16-item Quick Inventory of Depressive Symptomatology: A systematic review and meta-analysis. Journal of Psychiatric Research, 60, 132–140. https://doi.org/10.1016/j.jpsychires.2014.09.008
  • Rosso, I. M., Crowley, D. J., Silveri, M. M., Rauch, S. L., & Jensen, J. E. (2017). Hippocampus glutamate and N-acetyl aspartate markers of excitotoxic neuronal compromise in posttraumatic stress disorder. Neuropsychopharmacology, 42(8), 1698–1705. https://doi.org/10.1038/npp.2017.32
  • Rothbaum, B. O., Price, M., Jovanovic, T., Norrholm, S. D., Gerardi, M., Dunlop, B., Davis, M., Bradley, B., Duncan, E. J., Rizzo, A., & Ressler, K. J. (2014). A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. American Journal of Psychiatry, 171(6), 640–648. https://doi.org/10.1176/appi.ajp.2014.13121625
  • Rothman, D. L., De Feyter, H. M., de Graaf, R. A., Mason, G. F., & Behar, K. L. (2011). 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR in Biomedicine, 24(8), 943–957. https://doi.org/10.1002/nbm.1772
  • Rothman, D. L., de Graaf, R. A., Hyder, F., Mason, G. F., Behar, K. L., & De Feyter, H. M. (2019). In vivo 13C and 1H-[13C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR in Biomedicine, 32(10), e4172. doi:10.1002/nbm.4172
  • Sanacora, G., Treccani, G., & Popoli, M. (2012). Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology, 62(1), 63–77. https://doi.org/10.1016/j.neuropharm.2011.07.036
  • Schmaal, L., Hibar, D., Sämann, P. G., Hall, G., Baune, B., Jahanshad, N., Cheung, J., Van Erp, T., Bos, D., & Ikram, M. A. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22(6), 900–909. https://doi.org/10.1038/mp.2016.60
  • Schür, R. R., Draisma, L. W., Wijnen, J. P., Boks, M. P., Koevoets, M. G., Joels, M., Klomp, D. W., Kahn, R. S., & Vinkers, C. H. (2016). Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of 1H-MRS studies. Human Brain Mapping, 37(9), 3337–3352. https://doi.org/10.1002/hbm.23244
  • Scott, K. M., Smith, D. R., & Ellis, P. M. (2010). Prospectively ascertained child maltreatment and its association with DSM-IV mental disorders in young adults. Archives of General Psychiatry, 67(7), 712–719. https://doi.org/10.1001/archgenpsychiatry.2010.71
  • Seckl, J. R., & Meaney, M. J. (2004). Glucocorticoid programming. Annals of the New York Academy of Sciences, 1032(1), 63–84. https://doi.org/10.1196/annals.1314.006
  • Shao, L.-X., Liao, C., Gregg, I., Davoudian, P. A., Savalia, N. K., Delagarza, K., & Kwan, A. C. (2021). Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron, 109(16), 2535–2544. https://doi.org/10.1016/j.neuron.2021.06.008
  • Sheridan, M. A., & McLaughlin, K. A. (2014). Dimensions of early experience and neural development: Deprivation and threat. Trends in Cognitive Sciences, 18(11), 580–585. https://doi.org/10.1016/j.tics.2014.09.001
  • Sibson, N. R., Dhankhar, A., Mason, G., Behar, K., Rothman, D., & Shulman, R. (1997). In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. Proceedings of the National Academy of Sciences, 94(6), 2699–2704. https://doi.org/10.1073/pnas.94.6.2699
  • Stone, J. M., Day, F., Tsagaraki, H., Valli, I., McLean, M. A., Lythgoe, D. J., O'Gorman, R. L., Barker, G. J., & McGuire, P. K. (2009). Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to gray matter volume. Biological Psychiatry, 66(6), 533–539. https://doi.org/10.1016/j.biopsych.2009.05.006
  • Sydnor, V. J., Larsen, B., Kohler, C., Crow, A. J., Rush, S. L., Calkins, M. E., Gur, R. C., Gur, R. E., Ruparel, K., & Kable, J. W. (2021). Diminished reward responsiveness is associated with lower reward network GluCEST: An ultra-high field glutamate imaging study. Molecular Psychiatry, 26(6), 2137–2147. https://doi.org/10.1038/s41380-020-00986-y
  • Teicher, M. H., & Samson, J. A. (2013). Childhood maltreatment and psychopathology: A case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. American Journal of Psychiatry, 170(10), 1114–1133. https://doi.org/10.1176/appi.ajp.2013.12070957
  • Weathers, F. W., Bovin, M. J., Lee, D. J., Sloan, D. M., Schnurr, P. P., Kaloupek, D. G., Keane, T. M., & Marx, B. P. (2018). The Clinician-Administered PTSD Scale for DSM–5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychological Assessment, 30(3), 383. https://doi.org/10.1037/pas0000486
  • Widom, C. S., Horan, J., & Brzustowicz, L. (2015). Childhood maltreatment predicts allostatic load in adulthood. Child Abuse & Neglect, 47, 59–69. https://doi.org/10.1016/j.chiabu.2015.01.016
  • Wojtas, A., Bysiek, A., Wawrzczak-Bargiela, A., Szych, Z., Majcher-Maślanka, I., Herian, M., Maćkowiak, M., & Gołembiowska, K. (2022). Effect of psilocybin and ketamine on brain neurotransmitters, glutamate receptors, DNA and Rat behavior. International Journal of Molecular Sciences, 23(12), 6713. https://doi.org/10.3390/ijms23126713
  • Wrocklage, K. M., Averill, L. A., Scott, J. C., Averill, C. L., Schweinsburg, B., Trejo, M., Roy, A., Weisser, V., Kelly, C., & Martini, B. (2017). Cortical thickness reduction in combat exposed US veterans with and without PTSD. European Neuropsychopharmacology, 27(5), 515–525. https://doi.org/10.1016/j.euroneuro.2017.02.010