2,770
Views
309
CrossRef citations to date
0
Altmetric
Research Article

Thermophilic Adaptation of Proteins

&
Pages 39-106 | Published online: 29 Sep 2008

REFERENCES

  • Akanuma, S., Yamagishi, A., Tanaka, N., and Oshima, T. 1998. Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Prot. Sci. 7: 698–705.
  • Akanuma, S., Yamagishi, A., Tanaka, N., and Oshima, T. 1999. Further improvement of the thermal stability of a partially stabilized Bacillus subtilis 3-isopropylmalate dehydrogenase variant by random and site-directed mutagenesis. Eur. J. Biochem. 260: 499–504.
  • Andra, S., Frey, G., Jaenicke, R., and Stetter, K. O. 1998. The thermosome from Methanopyrus kandleri possesses an NH4+-dependent ATPase activity. Eur. J. Biochem. 255: 93–99.
  • Archibald, J.M., Logsdon, J. M. Jr., and Doolittle, W. F. 1999. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9: 1053–1056.
  • Arguelles, J. C. 2000. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 174: 217–224.
  • Arnold, F. H. and Volkov, A. A. 1999. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3: 54–59.
  • Arnott, M.A., Michael, R. A., Thompson, C. R., Hough, D., and Danson, M. J. 2000. Ther-mostability and Thermoactivity of Citrate Synthases from the Thermophilic and Hyperthermophilic Archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J. Mol. Biol. 304: 657–668.
  • Auerbach, G., Ostendorp, R., Prade, L., Korndorfer, I., Dams, T., Huber, R., and Jaenicke, R. 1998. Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: the crystal structure at 2. 1 A resolution reveals strategies for intrinsic protein stabilization. Structure 6: 769–781.
  • Barns, S.M., Fundyga, R. E., Jeffries, M. W., and Pace, N. R. 1994. Remarkable archaeal diversity in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609–1613.
  • Barns, S.M., Delwiche, C. F., Palmer, J. D., and Pace, N. R. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93: 9188–9193.
  • Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., and Stetter, K. O. 1997. Pyrolobus fumarii, gen. And sp. Nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1: 14–21.
  • Brennan, T.V., Anderson, J. W., Jia, Z., Waygood, E. B., and Clarke, S. 1994. Repair of spontaneously deamidated HPr phosphocarrier protein catalyzed by the L-isoaspartate-(D-aspartate) O-methyltransferase. J. Biol. Chem. 269: 24586–24595.
  • Bukau, B. and Horwich, A. L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366.
  • Burggraf, S., Heyder, P., and Eis, N. 1997. A pivotal Archaea group. Nature 385: 780.
  • Cambillau, C. and Claverie, J.-M. 2000. Structural and genomic correlates of hyperther-mostability. J. Biol. Chem. 275: 3238332386.
  • Cavagnero, S., Zhou, Z. H., Adams, M. W., and Chan, S. I. 1995. Response of rubredoxin from Pyrococcus furiosus to environmental changes: implications for the origin of hyperthermostabiliy. Biochemistry 34: 9865–9873.
  • Cavagnero, S., Debe, D. A., Zhou, Z. H., Adams, M. W., and Chan, S. I. 1998. Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins. Biochemistry 37: 3369–3376.
  • Chakravarty, S. and Varadarajan, R. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65–69.
  • Ciulla, R.A., Burggraf, S., Stetter, K. O., and Roberts, M. F. 1994. Occurrence and role of di-myo-inositol-1,1'-phosphate in Methanococcus igneus. Appl. Environ. Microbiol. 60: 3660–3664.
  • Crameri, A., Raillard, S. A., Bermudez, E., and Stemmer, W. P. 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288–291.
  • DaCosta, M.S., Santos, H., and Galinski, E. A. 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In: Biotechnology of Extremophiles, pp. 118-153 (Antranikian, G., Ed.), Springer-Verlag, Berlin.
  • Dams, T. and Jaenicke, R. 1999. Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima. Biochemistry 38: 9169–9178.
  • Daniel, R.M., Dines, M., and Petach, H. H. 1996. The denaturation and degradation of stable enzymes at high temperatures. Biochem. J. 317: 1–11.
  • Dao-Pin, S., Sauer, U., Nicholson, H., and Matthews, B. W. 1991. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. Biochemistry 30: 7142–7153.
  • Darimont, B. 1994. Studies on Catalysis, Folding and Evolution of Indoleglycerol Phosphate Synthase, an Eightfold Pa Barrel Involved in Tryptophan Biosynthesis. Ph.D. thesis, University of Basel, Switzerland.
  • Darimont, B., Stehlin, C., Szadkowski, H., and Kirschner, K. 1998. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli. Prot. Sci. 7: 1221–1232.
  • De Bakker, P. I., Hunenberger, P. H., and McCammon, J. A. 1999. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. J. Mol. Biol. 285: 1811–1830.
  • Deckert, G., Warren, P.V., Gaasterland, T., Young, W. G., Lenox, A. L., Graham, D. E., Overbeek, R., Snead, M. A., Keller, M., Aujay, M., Huber, R., Feldman, R. A., Short, J. M., Olsen, G. J., and Swanson, R. V. 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392: 353–358.
  • Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A., and Bukau, B. 1999. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400: 693–696.
  • Ditzel, L., Lowe, J., Stock, D., Stetter, K. O., Huber, H., Huber, R., and Steinbacher, S. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125–138.
  • Elcock, A. H. 1998. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol. Biol. 284: 489–502.
  • Elcock, A. H. and McCammon, J. A. 1997. Continuum solvation model for studying protein hydration thermodynamics at high temperatures. J. Phys. Chem. 101: 9624–9634.
  • Emmerhoff, O.J., Klenk, H. P., and Birkeland, N. K. 1998. Characterization and sequence comparison of temperature-regulated chaperonins from the hyperthermophilic archaeon Archaeoglobus fulgidus. Gene 215: 431–438.
  • Fabry, S. and Hensel, R. 1987. Purification and characterization of D-glyceraldehyde-3-phosphate dehydrogenase from the ther-mophilic archaebacterium Methanothermus fervidus. Eur. J. Biochem. 165: 147–155.
  • Facchiano, A.M., Colonna, G., and Ragone, R. 1998. Helix stabilizing factors and stabilization of thermophilic proteins: an X-ray based study. Prot. Eng. 11: 753–760.
  • Furutani, M., Iida, T., Yoshida, T., and Maruyama, T. 1998. Group II chaperonin in a thermophilic methanogen, Methano-coccus thermolithotrophicus — chaper-one activity and filament-forming ability. J. Biol. Chem. 273: 28399–28407.
  • Geiger, T. and Clarke, S. 1987. Deamidation, isomerization, and racemization at aspar-aginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262: 785–794.
  • Giver, L., Gershenson, A., Freskgard, P. O., and Arnold, F. H. 1998. Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. U.S.A. 95: 12809–12813.
  • Glover, J. R. and Lindquist, S. 1998. Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73–82.
  • Goloubinoff, P., Mogk, A., Peres Ben Zvi, A., Tomoyasu, T., and Bukau, B. 1999. Sequential mechanism of solubilisation and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96: 13732–13737.
  • Gribaldo, S., Lumia, V., Creti, R., de Macario, E. C., Sanangelantoni, A., and Cammarano, P. 1999. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferrred from this protein. J. Bacteriol. 181: 434443.
  • Grimsley, G.R., Shaw, K. L., Fee, L. R., Alston, R. W., Huyghues-Despointes, B. M., Thurlkill, R. L., Scholtz, J. M., and Pace, C. N. 1999. Increasing protein stability by altering long-range coulombic interactions. Prot. Sci. 8: 1843–1849.
  • Grogan, D. W. 1998. Hyperthermophiles and the problem of DNA instability. Mol. Microbiol. 28: 1043–1049.
  • Gutsche, I., Essen, L.-O., and Baumeister, W. 1999. Group II chaperonins: new TriC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295–312.
  • Gutsche, I., Mihalache, O., and Baumeister, W. 2000a. ATPase cycle of an archaeal chaperonin. J. Mol. Biol. 300: 187–196.
  • Gutsche, I., Holzinger, J., RoBle, M., Heumann, H., Baumeister, W., and May, R. P. 2000b. Conformational rearrangements of an archaeal chaperonin upon ATPase cycling. Curr. Biol. 10: 405–408.
  • Gutsche, I., Mihalache, O., Hegerl, R., Typke, D., and Baumeister, W. 2000c. ATPase cycle controls the conformation of an archaeal chaperonin as visualized by cryo-electron microscopy. FEBS Lett. 477: 278–282.
  • Haley, D.A., Bova, M. P., Huang, Q.-L., Michaourab, H. S., and Stewart, P. L. 2000. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J. Mol. Biol. 298: 261–272.
  • Haney, P.J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., and Olsen, G. J. 1999. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. USA 96: 35783583.
  • Hayes, C. S. and Setlow, P. 1997. Analysis of deamidation of small, acid-soluble spore proteins from Bacillus subtilis in vitro and in vivo. J. Bacteriol. 179: 6020–6027.
  • Hennig, M., Darimont, B., Sterner, R., Kirschner, K., and Jansonius, J. N. 1995. 2.0 A structure of indole-3-glycerol phosphate syn-thase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability Structure 3: 1295–1306.
  • Hennig, M., Sterner, R., Kirschner, K., and Jansonius, J. N. 1997. Crystal structure at 2.0 A resolution of phosphoribosylanthranilate isomerase from the hyperthermophile Thermotoga mar-itima: possible determinants of protein stability. Biochemistry 36: 6009–6016.
  • Hensel, R. and Jakob, I. 1994. Stability of glycer-aldehyde-3-phosphate dehydrogenases from hyperthermophilic archaea at high temperature. System. Appl. Microbiol. 16: 742–745.
  • Hensel, R. and Konig, H. 1988. Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMSMicrobiol. Lett. 49: 75–79.
  • Hernandez, G., Jenney, F. E., Jr., Adams, M. W., and LeMaster, D. M. 2000. Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Proc. Natl. Acad. Sci. USA 97: 3166–3170.
  • Hesterkamp, T. and Bukau, B. 1998. Role of the DnaK and HscA homologs of Hsp70 chap-erones in protein folding in E. coli. EMBO J. 17: 4818–4828.
  • Hiller, R., Zhou, Z. H., Adams, M. W., and Englander, S. W. 1997. Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200°C. Proc. Natl. Acad. Sci. USA 94: 11329–11332.
  • Hollien, J. and Marqusee, S. 1999. A thermodynamic comparison of mesophilic and ther-mophilic ribonucleases H. Biochemistry 38: 3831–3836.
  • Horwich, A.L., Weber-Ban, E. U., and Finley, D. 1999. Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96: 11033–11040.
  • Hoseki, J., Yano, T., Koyama, Y., Kuramitsu, S., and Kagamiyama, H. 1999. Directed evolution of thermostable kanamycin-re-sistance gene: a convenient selection marker for Thermus thermophilus. J. Biochem. 126: 951–956.
  • Hough, D. W. and Danson, M. J. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3: 39–46.
  • Huber, R., Burggraf, S., Mayer, T., Barns, S. M., RoBnagel, P., and Stetter, K. O. 1995. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376: 57–58.
  • Hugenholtz, P., Pitulle, C., Herschberger, K. L., and Pace, N. R. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366–376.
  • Ibarra-Molero, B., Loladze, V,V., Makhatadze, G. I., and Sanchez-Ruiz, J. M. 1999. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Biochemistry 38: 8138–8149.
  • Ichikawa, J. K. and Clarke, S. 1998. A highly active protein repair enzyme from an extreme thermophile: the L-isoaspartyl methyltransferase from Thermotoga mar-itima. Arch. Biochem. Biophys. 358: 222231.
  • Jaenicke, R. 1991. Protein stability and molecular adaptations to extreme conditions. Eur. J. Biochem. 202: 715–728.
  • Jaenicke, R. 1998. What ultrastable globular proteins teach us about protein stability. Biochemistry (Moscow) 63: 312–321.
  • Jaenicke, R. 2000. Do ultrastable proteins from hyperthermophiles have high or low con-formational rigidity? Proc. Natl. Acad. Sci. USA 97: 2962–2964.
  • Jaenicke, R. and Bohm, G. 1998. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8: 738–748.
  • Jaenicke, R., Schurig, H., Beaucamp, N., and Ostendorp, R. 1996. Structure and stability of hyperstable proteins: glycolytic enzymes from the hyperthermophilic bacterium Thermotoga maritima. Adv. Prot. Chem. 48: 181–269.
  • Joachimiak, A., Quaite-Randall, E., Tollaksen, S., Mai, X., Adams, M. W. M., Josephs, R., and Giomett, C. 1997. Purification of chaperonins from thermophilic bacteria and archaea. J. Chromat. Ser. A 773: 131138.
  • Johnson, B.A., Murray, E. D., Jr., Clarke, S., Glass, D. B., and Aswad, D. W. 1987. Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides. J. Biol. Chem. 262: 5622–5629.
  • Kagawa, H. K. Osipiuk, J., Maltsev, N., Overbeek, R., Quaite-Randall, E., Joachimiak, A., and Trent, J. D. 1995. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J. Mol. Biol. 253: 712–725.
  • Kanodia, S., and Roberts, M. F. 1983. Methanophosphagen: unique cyclic pyro-phosphate isolated from Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 80: 5217–5221.
  • Karshikoff, A. and Ladenstein, R. 1998. Proteins from thermophilic and mesophilic organisms essentially do not differ in packing. Protein Eng. 11: 867–872.
  • Kengen, S. W. M., de Bok, F. A. M., van Loo, N. D., Dijkema, C., Stams, A. J. M., and de Vos, W. M. 1994. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J. Biol. Chem. 269: 17537–17541.
  • Kengen, S. W. M., Stams, A. J. M., and de Vos, W. M. 1996. Sugar metabolism of hyperthermophiles. FEMS Microbiol. Rev. 18: 119–137.
  • Kim, K.K., Kim, R., and Kim, S.-H. 1998a. Crystal structure of a small heat-shock protein. Nature 394: 595–599.
  • Kim, R., Kim, K. K., and Kim, S.-H. 1998b. Small heat-shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA 95: 9129–9133.
  • Klostermeier, D., Seidel, R., and Reinstein, J. 1999. The functional cycle and regulation of the Thermus thermophilus DnaK chap-erone system. J. Mol. Biol. 287: 511–525.
  • Klumpp, M., Baumeister, W., and Essen, L. O. 1997. Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91: 263–270.
  • Knapp, S., Karshikoff, A., Berndt, K. D., Christova, P., Atanasov, B., and Ladenstein, R., 1996. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus. J. Mol. Biol. 264: 1132–1144.
  • Knapp, S., Ladenstein, R., and Galinski, E. A. 1999. Extrinsic protein stabilization by the naturally occurring osmolytes P-hydroxyectoine and be-taine. Extremophiles 3: 191–198.
  • Koch, R., Spreinat, A., Lemke, K., and Antranikian, G. 1991. Purification and properties of a a-amylase from the archaeobacterium Pyrococcus woesei. Arch. Microbiol. 155: 572–578.
  • Kohlhoff, M., Dahm, A., and Hensel, R. 1996. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett. 383: 245–250.
  • Korndorfer, I., Steipe, B., Huber, R., Tomschy, A., and Jaenicke, R. 1995. The crystal structure of holo-glyceral-dehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. J. Mol. Biol. 246: 511–521.
  • Kowalski, J.M., Kelly, R. M., Konisky, J., Clark, D. S., and Wittrup, K. D. 1998. Purification and functional characterization of a chaperone from Methanococcus jannaschii. Syst. Appl. Microbiol. 21: 173–178.
  • Kumar, S., Tsai, C. J., and Nussinov, R. 2000a. Factors enhancing protein thermostabil-ity. Prot. Eng. 13: 179–191.
  • Kumar, S., Ma, B., Tsai, C. J., and Nussinov, R. 2000b. Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins 38: 368–383.
  • Lamosa, P., Martins, L. O., DaCosta, M. S., and Santos, H. 1998. Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl. Environ. Microbiol. 64: 3591–3598.
  • Lamosa, P., Burke, A., Peist, R., Huber, R., Liu, M.-Y., Silva, G., Rodrigues-Pousada, C., LeGall, J., Maycock, C., and Santos, H. 2000. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 66: 1974–1979.
  • Lebbink, J.H., Kaper, T., Bron, P., van der Oost, J., and de Vos, W. M. 2000. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus P-glucosidase CelB by directed evolution. Biochemistry 39: 3656–3665.
  • Lehmann, M., Pasamontes, L., Lassen, S.F., and Wyss, M. 2000. The consensus concept for thermostability engineering of proteins. Biochem. Biophys. Acta 1543: 408–415.
  • Leibrock, E., Bayer, P., and Ludemann, H.-D. 1995. Non-enzymatic hydrolysis of ATP at high temperatures and high pressures. Biophys. Chem. 54: 175–180.
  • Leroux, M. P. and Hartl, F. U. 2000. Protein folding: Versatility of the cytosolic chaperonin TriC/CCT. Curr. Biol. 10: R260-R264.
  • Leroux, M.P., Fandrich, M., Klunker, D., Siegers, K., Lupas, A. N., Brown, J. R., Schiebel, E., Dobson, C. M., and Hartl, F. U. 1999. MtGimC, a novel archaeal chap-erone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J. 18: 6730–6743.
  • Li, C. and Clarke, S. 1992. A protein methyltransferase specific for altered as-partyl residues is important in Escheri-chia coli stationary-phase survival and heat-shock resistance. Proc. Natl. Acad. Sci. USA 89: 9885–9889.
  • Li, W.T., Grayling, R. A., Sandman, K., Edmondson, S., Shriver, J. W., and Reeve, J. N. 1998. Thermodynamic stability of archaeal histones. Biochemistry 37: 10563–10572.
  • Li, W.T., Shriver, J. W., and Reeve, J. N. 2000. Mutational analysis of differences in ther-mostability between histones from meso-philic and hyperthermophilic archaea. J. Bacteriol. 182: 812–817.
  • Lippert, K. and Galinski, E. A. 1992. Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl. Microbiol. Biotechnol. 37: 61–65.
  • Loladze, V.V., Ibarra-Molero, B., Sanchez-Ruiz, J. M., and Makhatadze, G. I. 1999. Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface. Biochemistry 38: 16419–16423.
  • Lorimer, G. H. 1997. Folding with a two-stroke motor. Nature 388: 720–723.
  • Macario, A. J. L., Lange, M., Ahring, B. K., and Conway de Macario, E. 1999. Stress genes and proteins in the archaea. Microbiol. Mol. Biol. Rev. 63: 923–967.
  • Maes, D., Zeelen, J. P., Thanki, N., Beaucamp, N., Alvarez, M., Thi, M. H., Backmann, J., Martial, J. A., Wyns, L., Jaenicke, R., and Wierenga, R. K. 1999. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Proteins 37: 441–453.
  • Makhatadze, G. I. and Privalov, P. L. 1995. Energetics of protein structure. Adv. Protein Chem. 47: 307–425.
  • Malakauskas, S. M. and Mayo, S. L. 1998. Design, structure and stability of a hyperthermophilic protein variant. Nat. Struct. Biol. 5: 470–475.
  • Malin, G. and Lapidot, A. 1996. Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. J. Bacteriol. 178: 385–395.
  • Martins, L. O. and Santos, H. 1995. Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl. Environ. Microbiol. 61: 3299–3303.
  • Martins, L.O., Carreto, L. S., Da Costa, M. S., and Santos, H. 1996. New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J. Bacteriol. 178: 5644–5651.
  • Martins, L.O., Huber, R., Huber, H., Stetter, K. O., DaCosta, M. S., and Santos, H. 1997. Organic solutes in hyperthermophilic archaea. Appl. Environ. Microbiol. 63: 896–902.
  • Matussek, K., Moritz, P., Brunner, N., Eckerskorn, C., and Hensel, R. 1998. Cloning, sequencing, and expression of the gene encoding cyclic 2,3-diphosphoglycerate synthetase, the key enzyme of cyclic 2,3-diphosphoglycerate metabolism in Methanothermus fervidus. J. Bacteriol. 180: 5997–6004.
  • McCrary, B.S., Edmondson, S. P., and Shriver, J. W. 1996. Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d. J. Mol. Biol. 264: 784–805.
  • Merz, A., Knochel, T., Jansonius, J. N., and Kirschner, K. 1999. The hyperthermostable indoleglycerol phosphate synthase from Thermotoga maritima is destabilized by mu-tational disruption of two solvent-exposed salt bridges. J. Mol. Biol. 288: 753–763.
  • Merz, A., Yee, M. C., Szadkowski, H., Pappenberger, G., Crameri, A., Stemmer, W. P., Yanofsky, C., and Kirschner, K. 2000. Improving the catalytic activity of a thermophilic enzyme at low temperatures. Biochemistry 39: 880–889.
  • Minuth, T., Frey, G., Lindner, P., Rachel, R., Stetter, K. O., and Jaenicke, R. 1998. Re-combinant homo- and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258: 837–845.
  • Minuth, T., Henn, M., Rutkat, K., Andra, S., Frey, G., Rachel, R., Stetter, K. O., and Jaenicke, R. 1999. The recombinant thermosome from the archaeon Methanopyrus kandleri: in vitro analysis of its chaperone activity. Biol. Chem. 380: 55–62.
  • Miyazaki, K. and Arnold, F. H. 1999. Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J. Mol. Evol. 49: 716720.
  • Miyazaki, K., Wintrode, P. L., Grayling, R. A., Rubingh, D. N., and Arnold, F. H. 2000. Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 297: 1015–1026.
  • Mogk, A., Tomoyasu, T., Goloubinoff, P., Rudiger, S., Roder, D., Langen, H., and Bukau, B. 1999. Identification of thermo-labile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18: 6934–6949.
  • Motohashi, K., Watanabe, Y., Yohda, M., and Yoshida, M. 1999. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96: 7184–7189.
  • Mueller, U., Perl, D., Schmid, F. X., and Heinemann, U. 2000. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J. Mol. Biol. 297: 975–988.
  • Murphy, K. P. and Freire, E. 1992. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv. Protein Chem. 43: 313–361.
  • Myers, J.K., Pace, C. N., and Scholtz, J. M. 1995. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Prot. Sci. 4: 2138–2148.
  • Nelson, K.E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Nelson, W. C., Ketchum, K. A., McDonald, L., Utterback, T. R., Malek, J. A., Linher, K. D., Garrett, M. M., Stewart, A. M., Cotton, M. D., Pratt, M. S., Phillips, C. A., Richardson, D., Heidelberg, J., Sutton, G. G., Fleischmann, R. D., Eisen, J. A., White, O., Salzberg, S. L., Smith, H. O., Venter, J. C., and Fraser, C. M. 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399: 323329.
  • Nemeth, A., Svingor, A., Pocsik, M., Dobo, J., Magyar, C., Szilagyi, A., Gal, P., and Zavodszky, P. (2000). Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. FEBS Lett. 468: 48–52.
  • Netzer, W. J. and Hartl, F. U. 1998. Protein folding in the cytosol: chaperonin-depen-dent and -independent mechanisms. Trends Biochem. Sci. 23: 68–73.
  • Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711–729.
  • Nunes, O.C., Manaia, C. M., Da Costa, M. S., and Santos, H. 1995. Compatible solutes in the thermophilic bacteria Rhodothermus marinus and Thermus thermophilus. Appl. Environ. Microbiol. 61: 2351–2357.
  • Pace, C. N. 2000. Single surface stabilizer. Nat. Struct. Biol. 7: 345–346.
  • Pace, C. N. and Scholtz, J. M. 1997. Measuring the conformational stability of a protein. In: Protein structure-a practical approach, pp. 299-321. (Creighton, T. E., Ed.). Oxford University Press, Oxford, New York.
  • Pappenberger, G., Schurig, H., and Jaenicke, R. 1997. Disruption of an ionic network leads to accelerated thermal denaturation of D-glyceraldehyde-3-phosphate dehy-drogenase from the hyperthermophilic bacterium Thermotoga maritima. J. Mol. Biol. 274: 676–683.
  • Perl, D., Welker, C., Schindler, T., Schroder, K., Marahiel, M. A., Jaenicke, R., and Schmid, F. X. 1998. Conservation of rapid two-state folding in mesophilic, thermo-philic and hyperthermophilic cold shock proteins. Nat. Struct. Biol. 5: 229–235.
  • Perl, D., Mueller, U., Heinemann, U., and Schmid, F. X. 2000. Two exposed amino acid residues confer thermostability on a cold shock protein Nat. Struct. Biol. 7: 380–383.
  • Perutz, M. F. and Raidt, H. 1975. Stereochemical basis of heat stability in bacterial ferre-doxins and in haemoglobin A2. Nature 255: 256–259.
  • Petukhov, M., Kil, Y., Kuramitsu, S., and Lanzov, V. 1997. Insights into thermal resistance of proteins from the intrinsic stability of their alpha-helices. Proteins 29: 309–320.
  • Pfeil, W. 1998. Protein Stability and Folding. A Collection of Thermodynamic Data, pp. 3-14. Springer-Verlag, Berlin.
  • Pfeil, W., Gesierich, U., Kleemann, G. R., and Sterner, R. 1997. Ferredoxin of the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water. J. Mol. Biol. 272: 591–596.
  • Phipps, B.M., Typke, D., Hegerl, R., Volker, S., Hoffmann, A., Stetter, K. O., and Baumeister, W. 1993. Structure of a chaperone from a thermophilic archaebacterium. Nature 361: 475–477.
  • Plaza del Pino, I. M., Ibarra-Molero, B., and Sanchez-Ruiz, J. M. 2000. Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins 40: 58–70.
  • Privalov, P.L. 1979. Stability ofproteins: small globular proteins. Adv. Prot. Chem. 33: 167–241.
  • Privalov, P.L. and Khechinashvili, N.N. 1974. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J. Mol. Biol. 86: 665–684.
  • Quaite-Randall, E., Trent, J. D., Josephs, R., and Joachimiak, A. 1995. Conformational cycle of the archaeosome, a TCP1-like chaperonin from Sulfolobus shibatae. J. Biol. Chem. 270: 28818–28823.
  • Ramakrishnan, V., Verhagen, M. F. J. M., and Adams, M. W. W. 1997. Characterization of di-myo-inositol-1,1'-phosphate in the hyperthermophilic bacterium Thermotoga maritima. Appl. Environ. Microbiol. 63: 347–350.
  • Ramos, A., Raven, N. D. H., Sharp, R. J., Bartolucci, S., Rossi, M., Cannio, R., Lebbink, J., van der Oost, J., de Vos, W. M., and Santos, H. 1997. Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl. Environ. Microbiol. 63: 4020–4025.
  • Reysenbach, A.-L., Ehringer, M., and Hershberger, K. 2000. Microbial diversity at 83 °C in Calcite springs, Yellowstone National Park: another environment where the Aquificiales and "Korarchaeota" coexist. Extremophiles 4: 61–67.
  • Roseman, A.M., Chen, S., White, H., Braig, K., and Saibil, H. R. 1996. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87: 241–251.
  • Rudiger, S., Buchberger, A., and Bukau, B. 1997. Interaction of Hsp70 chaperones with substrates. Nature Struct. Biol. 4: 342–349.
  • Schmid, F. X. 1997. Optical spectroscopy to characterize protein conformation and con-formational changes. In: Protein Structure—A Practical Approach, pp. 261-297. (Creighton, T. E., Ed.). Oxford University Press, Oxford.
  • Schoen, G., Quiate-Randall, E., Jiminez, J. L., Joachimiak, A., and Saibil, H. R. 2000. Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. J. Mol. Biol. 269: 813–819.
  • Scholz, S., Sonnenbichler, J., Schafer, W., and Hensel, R. 1992. Di-myo-insitol-1,1'-phos-phate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 306: 239–242.
  • Schroder, H., Langer, T., Hartl, F. U., and Bukau, B. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12: 4137–4144.
  • Seely, R. J. and Fahrney, D. E. 1983. A novel diphospho-P,P'-diester from Methanobac-terium thermoautotrophicum. J. Biol. Chem. 258: 10835–10838.
  • Shibuya, H., Kaneko, S., and Hayashi, K. 2000. Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling. Biochem. J. 349: 651–656.
  • Shima, S., Herault, D. A., Berkessel, A., and Thauer, R. K. 1998. Activation and thermostabilization effects of cyclic 2,3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri. Arch. Microbiol. 170: 469–472.
  • Shima, S., Thauer, R. K., Ermler, U., Durchschlag, H., Tziatzios, C., and Schubert, D. 2000. A mutation affecting the association equilibrium of formyltransferase from the hyperthermophilic Methanopyrus kandleri and its influence on the enzyme's activity and thermostability. Eur. J. Biochem. 267: 6619–6623.
  • Shoichet, B.K., Baase, W. A., Kuroki, R., and Matthews, B. W. 1995. A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA 92: 452456.
  • Shtilerman, M., Lorimer, G. H., and Englander, S. W. 1999. Chaperonin function: folding by forced unfolding. Science 284: 822–825.
  • Siegers, K., Waldmann, T., Leroux, M. R., Grein, K., Shevchenko, A., Schiebel, E., and Hartl, F. U. 1999. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J. 18: 75–84.
  • Siegert, R., Leroux, M. R., Scheuffler, C., Hartl, F. U., and Moarefi, I. 2000. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103: 621623.
  • Silva, Z., Borges, N., Martins, L. O., Wait, R., DaCosta, M. S., and Santos, H. 1999. Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3: 163–172.
  • Slobodkin, A.I., Jeanthon, C., L'Haridon, S., Nazina, T., Miroshnichenko, M., and Bonch-Osmolovskaya, E. 1999. Dissimi-latory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr. Microbiol. 39: 99–102.
  • Song, J. K. and Rhee, J. S. 2000. Simultaneous enhancement of thermostability and catalytic activity of phospholipase A(1) by evolutionary molecular engineering. Appl. Environ. Microbiol. 66: 890–894.
  • Spector, S., Wang, M., Carp, S. A., Robblee, J., Hendsch, Z. S., Fairman, R., Tidor, B., and Raleigh, D. P. 2000. Rational modification of protein stability by the mutation of charged surface residues. Biochemistry 39: 872–879.
  • Spiller, B., Gershenson, A., Arnold, F. H., and Stevens, R. C. 1999. A structural view of evolutionary divergence. Proc. Natl. Acad. Sci. USA 96: 12305–12310.
  • Stemmer, W. P. 1994a. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91: 10747–10751.
  • Stemmer, W. P. 1994b. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391.
  • Stephenson, R. C. and Clarke, S. 1989. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J. Biol. Chem. 264: 6164–6170.
  • Sterner, R., Kleemann, G. R., Szadkowski, H., Lustig, A., Hennig, M., and Kirschner, K. 1996. Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Prot. Sci. 5: 2000–2008.
  • Stetter, K. O. 1996. Hyperthermophilic prokary-otes. FEMSMicrobiol. Rev. 18: 149–158.
  • Stetter, K. O. 1999. Extremophiles and their adaptation to hot environments. FEBS Lett. 452: 22–25.
  • Stetter, K.O., Huber, R., Blochl, E., Kurr, M., Eden, R. D., Fiedler, M., Cash, H., and Vance, I. 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 300: 743–745.
  • Strop, P. and Mayo, S. L. 2000. Contribution of surface salt bridges to protein stability. Biochemistry 39: 1251–1255.
  • Strop, P., Marinescu, A.M., and Mayo, S.L. 2000. Structure of a protein G helix variant suggests the importance of helix propensity and helix dipole interactions in protein design. Prot. Sci. 9: 1391–1394.
  • Szilagyi, A. and Zavodszky, P. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure Fold. Des. 8: 493–504.
  • Takai, K. and Sako, Y. 1999. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol. 28: 177–188.
  • Tanner, J.J., Hecht, R. M., and Krause, K. L. 1996. Determinants of enzyme thermosta-bility observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 2.5 A resolution. Biochemistry 35: 2597–2609.
  • Teter, S.A., Houry, W. A., Ang, D., Tradler, T., Rockabrand, D., Fischer, G., Blum, P., Georgopoulos, C., and Hartl, F. U. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755765.
  • Thoma, R., Hennig, M., Sterner, R., and Kirschner, K. 2000. Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Structure Fold. Des. 8: 265–276.
  • Thomm, M., Madon, J., and Stetter, K. O. 1986. DNA-dependent RNA polymerases of the three orders of methanogens. Biol. Chem. Hoppe-Seyler 367: 473–481.
  • Thompson, M. J. and Eisenberg, D. 1999. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290: 595–604.
  • Timasheff, S. N. 1993. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22: 67–97.
  • Timasheff, S. N. 1995. Solvent stabilization of protein structure. In: Methods in Molecular Biology, Vol. 40: Protein Stability and Folding: Theory and Practice, pp. 253269. (Shirley, B. A., Ed.), Humana Press, Totowa.
  • Van de Vossenberg, J. L. C. M., Driessen, A. J. M., and Konings, W. N. 1998. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2: 163–170.
  • Van den Burg, B., Vriend, G., Veltman, O. R., Venema, G., and Eijsink, V. G. 1998. Engineering an enzyme to resist boiling. Proc. Natl. Acad. Sci. USA 95: 2056–2060.
  • Veinger, L., Diamant, S., Buchner, J., and Goloubinoff, P. 1998. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273: 11032–11037.
  • Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S., Stillman, T. J., Britton, K. L., Rice, D. W., Klump, H. H., and Robb, F. T. 1998. Protein thermostability above 100 °C: a key role for ionic interactions. Proc. Natl. Acad. Sci. US A 95: 12300–12305.
  • Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M. 1994. Xylanases in biobleaching. From an idea to industy. FEMS Microbiol. Lett. 13: 335–350.
  • Waldmann, T., Nimmesgern, E., Nitsch, M. Peters, J., Pfeifer, G., Muller, S., Kellermann, J., Engel, A., Hartl, F. U., and Baumeister, W. 1995. The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur. J. Biochem. 227: 848–856.
  • Wassenberg, D., Schurig, H., Liebl, W., and Jaenicke, R. 1997. Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: Structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Prot. Sci. 6: 1718–1726.
  • Wassenberg, D., Liebl, W., and Jaenicke, R. 2000. Maltose-binding protein from the hyperthermophilic bacterium Thermotoga maritima: stability and binding properties. J. Mol. Biol. 295: 279–288.
  • Watanabe, Y., Motohashi, K., Taguchi, H., and Yoshida, M. 2000. Heat-inactivated proteins managed by DnaKJ-GrpE-ClpB chaperones are released as a chaperonin-recognizable non-native form. J. Biol. Chem. 275: 12388–12392.
  • Weber-Ban, E. U., Reid, B. G., Miranker, A. D., and Horwich, A. L. 1999. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401: 90–93.
  • Williams, J.C., Zeelen, J. P., Neubauer, G., Vriend, G., Backmann, J., Michels, P. A., Lambeir, A. M., and Wierenga, R. K. 1999. Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Prot. Eng. 12: 243–250.
  • Wray, J.W., Baase, W. A., Lindstrom, J. D., Weaver, L. H., Poteete, A. R., and Matthews, B. W. 1999. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. J. Mol. Biol. 292: 1111–1120.
  • Wright, H. T. 1991. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit. Rev. Biochem. Mol. Biol. 26: 1–52.
  • Xavier, K.B., da Costa, M. S., and Santos, H. 2000. Demonstration of a novel glyco-lytic pathway in the hyperthermophilic archaeon Thermococcus zilligii by 13C-labeling experiments and nuclear magnetic resonance analysis. J. Bacteriol. 182: 4632–4636.
  • Xiao, L. and Honig, B. 1999. Electrostatic contributions to the stability of hyperthermophilic proteins. J. Mol. Biol. 289: 1435–1444.
  • Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H. X., Maki, Y., and Shimizu, A. 1998. Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl. Environ. Microbiol. 64: 16801687.
  • Yan, Z., Fujiwara, S., Kohda, K., Takagi, M., and Imanaka, T. 1997. In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63: 785–789.
  • Yip, K.S., Stillman, T. J., Britton, K. L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., Engel, P. C., Pasquo, A., Chiaraluce, R., and Consalvi, V. 1995. The structure of Pyrococcus furiosus glutamate dehy-drogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3: 1147–1158.
  • Yoshida, T., Yohda, M., Iida, T., Maruyama, T., Taguchi, H., Yazaki, K., Ohta, T., Odaka, M., Endo, I., and Kagawa, Y. 1997. Structural and functional characterization ofhomo-oligomeric complexes of a and P chaperonin subunits from the hyperthermophilic archaeon Thermococcus strain KS-1. J. Mol. Biol. 273: 635–645.
  • Zavodszky, P., Kardos, J., Svingor, and Petsko, G. A. 1998. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl. Acad. Sci. USA 95: 7406–7411.
  • Zeikus, J.G., Vieille, C., and Savchenko, A. 1998. Thermozymes: biotechnoogy and structure-function relationships. Extremophiles 2: 179–183.
  • Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F. H. 1998. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16: 258–261.
  • Ziemienowicz, A., Skowyra, D., Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C., and Zylicz, M. Both the Escherichia coli chaperone systems, GroEL/GroES and Dnak/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same acitivity.1993. J. Biol. Chem. 268: 25425–25431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.