1,315
Views
1
CrossRef citations to date
0
Altmetric
Research Article

WFA-labeled perineuronal nets in the macaque claustrum

ORCID Icon &
Article: 1536104 | Received 29 May 2018, Accepted 05 Oct 2018, Published online: 30 Oct 2018

References

  • Edelstein LR, Denaro FJ. The claustrum: A historical review of its anatomy, physiology, cytochemistry and functional significance. Cell Mol Biol. 2004;50:1–9.
  • Baizer SJ. The Neurochemical organization of the claustrum (Chapter 3). In: Smytheis J, Edelstein LR, Ramachandran V, eds. The claustrum. Amsterdam: Elsevier, Academic Press; 2014. p. 85–118.
  • Baizer JS, Sherwood CC, Noonan M, et al. Comparative organization of the claustrum: what does structure tell us about function? Front Syst Neurosci. 2014;8:article 117.
  • Morawski M, Bruckner G, Arendt T, et al. Aggrecan: beyond cartilage and into the brain. Int J Biochem Cell Biol. 2012;44:690–693.
  • Wang D, Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 2012;349:147–160.
  • Yamada J, Jinno S. Subclass-specific formation of perineuronal nets around parvalbumin-expressing GABAergic neurons in Ammon’s horn of the mouse hippocampus. J Comp Neurol. 2015;523:790–804.
  • Mueller AL, Davis A, Sovich S, et al. Distribution of N-acetylgalactosamine-positive perineuronal nets in the macaque brain: anatomy and implications. Neural Plast. 2016;2016:1–19.
  • Lorenzo Bozzelli P, Alaiyed S, Kim E, et al. Proteolytic remodeling of perineuronal nets: effects on synaptic plasticity and neuronal population dynamics. Neural Plast. 2018;2018:1–13.
  • Pizzorusso T, Medini P, Berardi N, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–1251.
  • Brown SP, Mathur BN, Olsen SR, et al. New breakthroughs in understanding the role of functional interactions between the neocortex and the claustrum. J Neurosci. 2017;37:10877–10881.
  • Bertolotto A, Manzardo E, Guglielmone R. Immunohistochemical mapping of perineuronal nets containing chondroitin unsulfated proteoglycan in the rat central nervous system. Cell Tissue Res. 1996;283:283–295.
  • Morawski M, Bruckner G, Jager C, et al. Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer’s disease. Neuroscience. 2010;169:1347–1363.
  • Alpar A, Gartner U, Hartig W, et al. Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res. 2006;1120:13–22.
  • Rossier J, Bernard A, Cabungcal JH, et al. Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Mol Psychiatry. 2015;20:154–161.
  • Favuzzi E, Marques-Smith A, Deogracias R, et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron. 2017;95:639–655 e610.
  • McDonald AJ, Hamilton PG, Barnstable CJ. Perineuronal nets labeled by monoclonal antibody VC1.1 ensheath interneurons expressing parvalbumin and calbindin in the rat amygdala. Brain Struct Funct. 2018;223:1133–1148.
  • Steullet P, Cabungcal JH, Bukhari SA, et al. The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol Psychiatry. 2017;1–9. DOI:10.1038/mp.2017.230.
  • Ichinohe N, Rockland KS. Region specific micromodularity in the uppermost layers in primate cerebral cortex. Cereb Cortex. 2004;14:1173–1184.
  • Rockland KS, Nayyar N. Association of type I neurons positive for NADPH-diaphorase with blood vessels in the adult monkey corpus callosum. Front Neural Circuits. 2012;6:article 4.
  • Mortazavi F, Wang X, Rosene DL, et al. White matter neurons in young adult and aged rhesus monkey. Front Neuroanat. 2016;10:article 15.
  • Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009;25:1463–1465.
  • Hinova-Palova DV, Edelstein L, Landzhov B, et al. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum. Front Syst Neurosci. 2014;8:article 96.
  • Landzhov B, Hinova-Palova D, Edelstein L, et al. Comparative investigation of neuronal nitric oxide synthase immunoreactivity in rat and human claustrum. J Chem Neuroanat. 2017;86:1–14.
  • Wegner F, Hartig W, Bringmann A, et al. Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Exp Neurol. 2003;184:705–714.
  • Hartig W, Derouiche A, Welt K, et al. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 1999;842:15–29.
  • Cabungcal JH, Steullet P, Morishita H, et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci U S A. 2013;110:9130–9135.
  • Faralli A, Dagna F, Albera A, et al. Modifications of perineuronal nets and remodelling of excitatory and inhibitory afferents during vestibular compensation in the adult mouse. Brain Struct Funct. 2016;221:3193–3209.
  • Balmer TS. Perineuronal nets enhance the excitability of fast-spiking neurons. eNeuro. 2016;3:1–13.
  • Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol. 2017;525:1234–1249.
  • Reser DH, Richardson KE, Montibeller MO, et al. Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella). Front Syst Neurosci. 2014;8:123.
  • Reser DH, Majka P, Snell S, et al. Topography of claustrum and insula projections to medial prefrontal and anterior cingulate cortices of the common marmoset (Callithrix jacchus). J Comp Neurol. 2017;525:1421–1441.
  • Gamberini M, Passarelli L, Bakola S, et al. Claustral afferents of superior parietal areas PEc and PE in the macaque. J Comp Neurol. 2017;525:1475–1488.
  • Miyashita T, Nishimura-Akiyoshi S, Itohara S, et al. Strong expression of NETRIN-G2 in the monkey claustrum. Neuroscience. 2005;136:487–496.
  • Smith JB, Alloway KD, Hof PR, et al. The relationship between the claustrum and endopiriform nucleus: a perspective towards consensus on cross-species homology. J Comp Neurol. 2018. DOI:10.1002/cne.24537
  • White MG, Panicker M, Mu C, et al. Anterior cingulate cortex input to the claustrum is required for top-down action control. Cell Rep. 2018;22:84–95.
  • Jackson J, Karnani MM, Zemelman BV, et al. Inhibitory control of prefrontal cortex by the claustrum. Neuron. 2018;99:1029–1039.e4.
  • Kim J, Matney CJ, Roth RH, et al. Synaptic organization of the neuronal circuits of the claustrum. J Neurosci. 2016;36:773–784.
  • Crick FC, Koch C. What is the function of the claustrum? Philos Trans R Soc Lond B Biol Sci. 2005;360:1271–1279.
  • Smythies J, Edelstein L, Ramachandran V. Hypotheses relating to the function of the claustrum. Front Integr Neurosci. 2012;6:53.
  • Goll Y, Atlan G, Citri A. Attention: the claustrum. Trends Neurosci. 2015;38:486–495.
  • Bitanihirwe BK, Woo TU. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev. 2014;45:85–99.
  • Pantazopoulos H, Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016:1–23.
  • Halassa MM, Acsady L. Thalamic Inhibition: diverse sources, diverse scales. Trends Neurosci. 2016;39:680–693.
  • Hou G, Smith AG, Zhang ZW. Lack of intrinsic GABAergic connections in the thalamic reticular nucleus of the mouse. J Neurosci. 2016;36:7246–7252.
  • Clemente-Perez A, Makinson SR, Higashikubo B, et al. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep. 2017;19:2130–2142.
  • Lasek AW, Chen H, Chen WY. Releasing addiction memories trapped in perineuronal nets. Trends Genet. 2018;34:197–208.