2,083
Views
2
CrossRef citations to date
0
Altmetric
Transplants

A review of the risks of long-term consequences associated with components of the CHOP chemotherapy regimen

ORCID Icon, , &
Pages 1-11 | Received 27 Dec 2021, Accepted 29 Apr 2022, Published online: 03 Jun 2022

References

  • Allen UD, Preiksaitis JK, AST Infectious Diseases Community of Practice Epstein-Barr virus and posttransplant lymphoproliferative disorder in solid organ transplantation. Am J Transplant. 2013;(13 Suppl 4):1–120.
  • Parker A, Bowles K, Bradley JA, Haemato-oncology Task Force of the British Committee for Standards in Haematology and British Transplantation Society, et al. Management of post-transplant lymphoproliferative disorder in adult solid organ transplant recipients – BCSH and BTS guidelines. Br J Haematol. 2010;149(5):693–705.
  • Styczynski J, van der Velden W, Fox CP, Sixth European Conference on Infections in Leukemia, a joint venture of the Infectious Diseases Working Party of the European Society of Blood and Marrow Transplantation (EBMT-IDWP), the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer (EORTC-IDG), the International Immunocompromised Host Society (ICHS) and the European Leukemia Net (ELN), et al. Management of Epstein-Barr virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: sixth European Conference on infections in leukemia (ECIL-6) guidelines. Haematologica. 2016;101(7):803–811.
  • Blaes AH, Peterson BA, Bartlett N, et al. Rituximab therapy is effective for posttransplant lymphoproliferative disorders after solid organ transplantation: results of a phase II trial. Cancer. 2005;104(8):1661–1667.
  • Choquet S, Leblond V, Herbrecht R, et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood. 2006;107(8):3053–3057.
  • Fox CP, Burns D, Parker AN, et al. EBV-associated post-transplant lymphoproliferative disorder following in vivo T-cell-depleted allogeneic transplantation: clinical features, viral load correlates and prognostic factors in the rituximab era. Bone Marrow Transplant. 2014;49(2):280–286.
  • González-Barca E, Domingo-Domenech E, Capote FJ, GOTEL (Grupo Oncológico para el Tratamiento y Estudio de los Linfomas), et al. Prospective phase II trial of extended treatment with rituximab in patients with B-cell post-transplant lymphoproliferative disease. Haematologica. 2007;92(11):1489–1494.
  • Oertel SH, Verschuuren E, Reinke P, et al. Effect of anti-CD 20 antibody rituximab in patients with post-transplant lymphoproliferative disorder (PTLD). Am J Transplant. 2005;5(12):2901–2906.
  • Styczynski J, Gil L, Tridello G, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the infectious diseases working party of the European group for blood and marrow transplantation. Clin Infect Dis. 2013;57(6):794–802.
  • Trappe R, Oertel S, Leblond V, European PTLD Network, et al. Sequential treatment with rituximab followed by CHOP chemotherapy in adult B-cell post-transplant lymphoproliferative disorder (PTLD): the prospective international multicentre phase 2 PTLD-1 trial. Lancet Oncol. 2012;13(2):196–206.
  • Trappe RU, Dierickx D, Zimmermann H, et al. Response to rituximab induction is a predictive marker in B-cell post-transplant lymphoproliferative disorder and allows successful stratification into rituximab or R-CHOP consolidation in an international, prospective, multicenter phase II trial. J Clin Oncol. 2017;35(5):536–543.
  • Uhlin M, Wikell H, Sundin M, et al. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation. Haematologica. 2014;99(2):346–352.
  • Choquet S, Oertel S, LeBlond V, et al. Rituximab in the management of post-transplantation lymphoproliferative disorder after solid organ transplantation: proceed with caution. Ann Hematol. 2007;86(8):599–607.
  • Watson C, Barlev A, Worrall J, et al. Exploring the burden of short-term CHOP chemotherapy adverse events in post-transplant lymphoproliferative disease: a comprehensive literature review in lymphoma patients. J Drug Assess. 2020;10(1):18–26.
  • Watson C, Xu H, Forsythe A, et al. Younger patients are impacted by post-transplant lymphoproliferative disorder: findings from a systematic literature review of real-world evidence. Blood. 2018;132(Supplement 1):5841–5841.
  • Long-Term Follow-Up Guidelines Version 5.0 Children’s Oncology Group; 2018. [cited 2021 October]. Available from: http://www.survivorshipguidelines.org/pdf/2018/COG_LTFU_Guidelines_v5.pdf.
  • Hsieh SG, Hibbert S, Shaw P, et al. Association of cyclophosphamide use with dental developmental defects and salivary gland dysfunction in recipients of childhood antineoplastic therapy. Cancer. 2011;117(10):2219–2227.
  • Kaste SC, Goodman P, Leisenring W, et al. Impact of radiation and chemotherapy on risk of dental abnormalities: a report from the childhood cancer survivor study. Cancer. 2009;115(24):5817–5827.
  • Kaste SC, Qi A, Smith K, et al. Calcium and cholecalciferol supplementation provides no added benefit to nutritional counselling to improve bone mineral density in survivors of childhood acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer. 2014;61(5):885–893.
  • Prasad PK, Hardy KK, Zhang N, et al. Psychosocial and neurocognitive outcomes in adult survivors of adolescent and early young adult cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2015;33(23):2545–2552. 10
  • Alloin AL, Barlogis V, Auquier P, et al. Prevalence and risk factors of cataract after chemotherapy with or without Central nervous system irradiation for childhood acute lymphoblastic leukaemia: an LEA study. Br J Haematol. 2014;164(1):94–100.
  • Vogelzang NJ, Bosl GJ, Johnson K, et al. Raynaud’s phenomenon: a common toxicity after combination chemotherapy for testicular cancer. Ann Intern Med. 1981;95(3):288–292.
  • Abosoudah I, Greenberg ML, Ness KK, et al. Echocardiographic surveillance for asymptomatic late-onset anthracycline cardiomyopathy in childhood cancer survivors. Pediatr Blood Cancer. 2011;57(3):467–472.
  • Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31(29):3673–3680.
  • Armstrong GT, Plana JC, Zhang N, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–2884.
  • Blanco JG, Sun CL, Landier W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes–a report from the children’s oncology group. J Clin Oncol. 2012;30(13):1415–1421.
  • Feijen EA, Leisenring WM, Stratton KL, et al. Equivalence ratio for daunorubicin to doxorubicin in relation to late heart failure in survivors of childhood cancer. J Clin Oncol. 2015;33(32):3774–3780.
  • Haddy N, Diallo S, El-Fayech C, et al. Cardiac diseases following childhood cancer treatment: cohort study. Circulation. 2016;133(1):31–38.
  • Hines MR, Mulrooney DA, Hudson MM, et al. Pregnancy-associated cardiomyopathy in survivors of childhood cancer. J Cancer Surviv. 2016;10(1):113–121.
  • Hudson MM, Rai SN, Nunez C, et al. Noninvasive evaluation of late anthracycline cardiac toxicity in childhood cancer survivors. J Clin Oncol. 2007;25(24):3635–3643.
  • Mulrooney DA, Armstrong GT, Huang S, et al. Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy: a cross-sectional study. Ann Intern Med. 2016;164(2):93–101.
  • Mulrooney DA, Yeazel MW, Kawashima T, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the childhood cancer survivor study cohort. BMJ. 2009;339(dec08 1):b4606.
  • Ramjaun A, AlDuhaiby E, Ahmed S, et al. Echocardiographic detection of cardiac dysfunction in childhood cancer survivors: How long is screening required? Pediatr Blood Cancer. 2015;62(12):2197–2203.
  • van Dalen EC, van der Pal HJ, Kok WE, et al. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer. 2006;42(18):3191–3198.
  • van Dalen EC, van der Pal HJ, van den Bos C, et al. Clinical heart failure during pregnancy and delivery in a cohort of female childhood cancer survivors treated with anthracyclines. Eur J Cancer. 2006;42(15):2549–2553.
  • van der Pal HJ, van Dalen EC, van Delden E, et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30(13):1429–1437.
  • Afify Z, Shaw PJ, Clavano-Harding A, et al. Growth and endocrine function in children with acute myeloid leukaemia after bone marrow transplantation using busulfan/cyclophosphamide. Bone Marrow Transplant. 2000; 25(10):1087–1092.
  • Byrne J, Fears TR, Gail MH, et al. Early menopause in long-term survivors of cancer during adolescence. Am J Obstet Gynecol. 1992;166(3):788–793.
  • Chemaitilly W, Mertens AC, Mitby P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91(5):1723–1728.
  • Chow EJ, Stratton KL, Leisenring WM, et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the childhood cancer survivor study cohort. Lancet Oncol. 2016; 17(5):567–576.
  • Gracia CR, Sammel MD, Freeman E, et al. Impact of cancer therapies on ovarian reserve. Fertil Steril. 2012;97(1):134–140.e1.
  • Green DM, Kawashima T, Stovall M, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27(16):2677–2685.
  • Green DM, Kawashima T, Stovall M, et al. Fertility of male survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2010;28(2):332–339.
  • Green DM, Liu W, Kutteh WH, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude lifetime cohort study. Lancet Oncol. 2014;15(11):1215–1223.
  • Hamre H, Kiserud CE, Ruud E, et al. Gonadal function and parenthood 20 years after treatment for childhood lymphoma: a cross-sectional study. Pediatr Blood Cancer. 2012;59(2):271–277.
  • Lunsford AJ, Whelan K, McCormick K, et al. Antimüllerian hormone as a measure of reproductive function in female childhood cancer survivors. Fertil Steril. 2014;101(1):227–231.
  • Romerius P, Ståhl O, Moëll C, et al. High risk of azoospermia in men treated for childhood cancer. Int J Androl. 2011;34(1):69–76.
  • Sklar CA, Mertens AC, Mitby P, et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst. 2006;98(13):890–896.
  • Thomas-Teinturier C, Allodji RS, Svetlova E, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2015;30(6):1437–1446.
  • Wallace WH, Shalet SM, Crowne EC, et al. Gonadal dysfunction due to cis-platinum. Med Pediatr Oncol. 1989;17(5):409–413.
  • Allodji RS, Schwartz B, Veres C, et al. Risk of subsequent leukemia after a solid tumor in childhood: Impact of bone marrow radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys. 2015;93(3):658–667.
  • Bhatia S, Krailo MD, Chen Z, et al. Therapy-related myelodysplasia and acute myeloid leukemia after ewing sarcoma and primitive neuroectodermal tumor of bone: a report from the children’s oncology group. Blood. 2007;109(1):46–51.
  • Eichenauer DA, Thielen I, Haverkamp H, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study group. Blood. 2014;123(11):1658–1664.
  • Greene MH, Harris EL, Gershenson DM, et al. Melphalan may be a more potent leukemogen than cyclophosphamide. Ann Intern Med. 1986;105(3):360–367.
  • Koontz MZ, Horning SJ, Balise R, et al. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford university experience over three generations of clinical trials. J Clin Oncol. 2013;31(5):592–598.
  • Le Deley MC, Leblanc T, Shamsaldin A, Société Française d’Oncologie Pédiatrique, et al. Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the société française d’Oncologie pédiatrique. J Clin Oncol. 2003;21(6):1074–1081.
  • Nottage K, Lanctot J, Li Z, et al. Long-term risk for subsequent leukemia after treatment for childhood cancer: a report from the childhood cancer survivor study. Blood. 2011;117(23):6315–6318.
  • Elmantaser M, Stewart G, Young D, et al. Skeletal morbidity in children receiving chemotherapy for acute lymphoblastic leukaemia. Arch Dis Child. 2010;95(10):805–809.
  • Girard P, Auquier P, Barlogis V, et al. Symptomatic osteonecrosis in childhood leukemia survivors: prevalence, risk factors and impact on quality of life in adulthood. Haematologica. 2013;98(7):1089–1097.
  • Kadan-Lottick NS, Dinu I, Wasilewski-Masker K, et al. Osteonecrosis in adult survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2008;26(18):3038–3045.
  • Mattano LA Jr., Devidas M, Nachman JB, et al. Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncol. 2012;13(9):906–915.
  • Mattano LA Jr., Sather HN, Trigg ME, et al. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the children’s cancer group. J Clin Oncol. 2000;18(18):3262–3272.
  • te Winkel ML, Pieters R, Hop WC, et al. Prospective study on incidence, risk factors, and long-term outcome of osteonecrosis in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2011;29(31):4143–4150.
  • Pedersen-Bjergaard J, Ersbøll J, Hansen VL, et al. Carcinoma of the urinary bladder after treatment with cyclophosphamide for non-Hodgkin’s lymphoma. N Engl J Med. 1988;318(16):1028–1032.
  • Stillwell TJ, Benson RC. Jr. Cyclophosphamide-induced hemorrhagic cystitis. A review of 100 patients. Cancer. 1988;61(3):451–457.
  • Stillwell TJ, Benson RC Jr., Burgert EO, Jr. Cyclophosphamide-induced hemorrhagic cystitis in Ewing’s sarcoma. J Clin Oncol. 1988;6(1):76–82.
  • Travis LB, Curtis RE, Glimelius B, et al. Bladder and kidney cancer following cyclophosphamide therapy for non-Hodgkin’s lymphoma. J Natl Cancer Inst. 1995;87(7):524–530.
  • Bernard F, Auquier P, Herrmann I, et al. Health status of childhood leukemia survivors who received hematopoietic cell transplantation after BU or TBI: an LEA study. Bone Marrow Transplant. 2014;49(5):709–716.
  • Huguet F, Leguay T, Thomas X, et al. The upper age limit for a pediatric-Inspired therapy in younger adults with Ph-Negative acute lymphoblastic leukemia (ALL)? Analysis of the Graall-2005 study. Blood. 2016;128(22):762–762. 2016/01/01/