12,945
Views
215
CrossRef citations to date
0
Altmetric
Review

Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone

&
Article: e996025 | Received 03 Dec 2014, Accepted 04 Dec 2014, Published online: 19 Feb 2015

References

  • Sharpe RM. Regulation of spermatogenesis. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. New York: Raven Press, Ltd; 1994. p. 1363-434.
  • Plant TM, Ramaswamy S, Simorangkir DR, Marshall GR. Postnatal and pubertal development of the rhesus monkey (Macaca mulatta) testis. Ann N Y Acad Sci 2005; 1061:149-62; PMID:16467264; http://dx.doi.org/10.1196/annals.1336.016
  • Witchell SF, Plant TM. Puberty: Gonadarche and adrenarche. In: Strauss JF, Barbieri RL, editors. Yen & Jaffe's Reproductive Endocrinology. 7th Edition. Philadelphia: Elsevier Saunders; 2014. P. 377-421.
  • Pelletier G, Leclerc R, Labrie F. Identification of gonadotropic cells in the human pituitary by immunoperoxidase technique. Mol Cell Endocrinol 1976; 6(2):123-8; PMID:793912; http://dx.doi.org/10.1016/0303-7207(76)90012-5
  • Dada MO, Campbell GT, Blake CA. A quantitative immunocytochemical study of the luteinizing hormone and follicle-stimulating hormone cells in the adenohypophysis of adult male rats and adult female rats throughout the estrous cycle. Endocrinology 1983; 113(3):970-84; PMID:6409593; http://dx.doi.org/10.1210/endo-113-3-970
  • Watanabe T, Uchiyama Y, Grube D. Topology of chromogranin A and secretogranin II in the rat anterior pituitary: potential marker proteins for distinct secretory pathways in gonadotrophs. Histochemistry 1991; 96(4):285-93; PMID:1723974; http://dx.doi.org/10.1007/BF00271348
  • McNeilly AS, Crawford JL, Taragnat C, Nicol L, McNeilly JR. The differential secretion of FSH and LH: regulation through genes, feedback and packaging. Reprod Suppl 2003; 61:463-76; PMID:14635955
  • Abel MH, Charlton HM, Huhtaniemi I, Pakarinen P, Kumar TR, Christian HC. An investigation into pituitary gonadotrophic hormone synthesis, secretion, subunit gene expression and cell structure in normal and mutant male mice. J Neuroendocrinol 2013; 25(10):863-75; PMID:23895394; http://dx.doi.org/10.1111/jne.12081
  • Ramaswamy S, Marshall GR, Pohl CR, Friedman RL, Plant TM. Inhibitory and stimulatory regulation of testicular inhibin B secretion by luteinizing hormone and follicle—stimulating hormone, respectively, in the rhesus monkey (Macaca mulatta). Endocrinology 2003; 144(4):1175-85; PMID:12639898; http://dx.doi.org/10.1210/en.2002-221078
  • Vihko KK, LaPolt PS, Nishimori K, Hsueh AJ. Stimulatory effects of recombinant follicle-stimulating hormone on Leydig cell function and spermatogenesis in immature hypophysectomized rats. Endocrinology 1991; 129:1926-32; PMID:1915076; http://dx.doi.org/10.1210/endo-129-4-1926
  • Bremner WJ, Millar MR, Sharpe RM, Saunders PT. Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology 1994; 135(3):1227-34; PMID:8070367
  • McLachlan RI, Wreford NG, de Kretser DM, Robertson DM. The effects of recombinant follicle-stimulating hormone on the restoration of spermatogenesis in the gonadotropin-releasing hormone-immunized adult rat. Endocrinology 1995; 136(9):4035-43; PMID:7649112
  • Russell LD, Kershaw M, Borg KE, El Shennawy A, Rulli SS, Gates RJ, Calandra RS. Hormonal regulation of spermatogenesis in the hypophysectomized rat: FSH maintenance of cellular viability during pubertal spermatogenesis. J Andrology 1998; 19(3):308-19; discussion 341-2
  • Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, Allan CM. Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology 2003; 144:509-17; PMID:12538611; http://dx.doi.org/10.1210/en.2002-220710
  • O’Shaughnessy PJ, Monteiro A, Verhoeven G, De Gendt K, Abel MH. Effect of FSH on testicular morphology and spermatogenesis in gonadotropin-deficient hypogonadal mice lacking androgen receptors. Reproduction 2010; 139:177-184; http://dx.doi.org/10.1530/REP-09-0377
  • Singh J, Handelsman DJ. The effects of recombinant FSH on testosterone-induced spermatogenesis in gonadotropin deficient (hpg) mice. J Androl 1996; 17:382-393; PMID:8889701
  • Matikainen T, Toppari J, Vihko KK, Huhtaniemi I. Effects of recombinant human FSH in immature hypophysectomized male rats: evidence for Leydig cell-mediated action on spermatogenesis. J Endocrinol 1994; 141:449-457; PMID:8071643; http://dx.doi.org/10.1677/joe.0.1410449
  • Russell LD, Goh JC, Rashed RM, Vogl AW. The consequences of actin disruption at Sertoli ectoplasmic specialization sites facing spermatids after in vivo exposure of rat testis to cytochalasin D. Biol Reprod 1988; 39:105-8; http://dx.doi.org/10.1095/biolreprod39.1.105
  • Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997; 15(2):201-4; PMID:9020850; http://dx.doi.org/10.1038/ng0297-201
  • Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci U S A 1998; 95(23):13612-7; PMID:9811848; http://dx.doi.org/10.1073/pnas.95.23.13612
  • Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 2000; 141(5):1795-803; PMID:10803590
  • Kumar TR. What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 2005; 130(3):293-302; PMID:16123236; http://dx.doi.org/10.1530/rep.1.00660
  • Siegel ET, Kim HG, Nishimoto HK, Layman LC. The molecular basis of impaired follicle-stimulating hormone action: evidence from human mutations and mouse models. Reprod Sci 2013; 20(3):211-33; PMID:23184658; http://dx.doi.org/10.1177/1933719112461184
  • Allan CM, Haywood M, Swaraj S, Spaliviero J, Koch A, Jimenz M, Poutanen M, Levallet J, Huhtaniemi I, Illingworth PH, Handelsman DJ. A novel transgenic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions. Endocrinology 2001; 142:2213-20; PMID:11356665
  • Johnston H, Baker PJ, Abel M, Charlton HM, Kumar TR, O’Shaughnessy PJ. Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 2004; 145:318-29; PMID:14551232; http://dx.doi.org/10.1210/en.2003-1055
  • Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, Guillou F, O’Shaughnessy PJ. Spermatogenesis and sertoli cell activity in mice lacking sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 2008; 149:3279-85; PMID:18403489; http://dx.doi.org/10.1210/en.2008-0086
  • Krishnamurthy H, Babu PS, Morales CR, Sairam MR. Delay in sexual maturity of the follicle-stimulating hormone receptor knockout male mouse. Biol Reprod 2001; 65:522-531; PMID:11466221; http://dx.doi.org/10.1095/biolreprod65.2.522
  • Grover A, Sairam MR, Smith CE, Hermo L. Structural and functional modifications of Sertoli cells in the testis of adult follicle-stimulating hormone receptor knockout mice. Biol Reprod 2004; 71:117-29; PMID:14998910; http://dx.doi.org/10.1095/biolreprod.103.027003
  • Moudgal NR, Sairam MR, Krishnamurthy HN, Sridhar S, Krishnamurthy H, Khan H. Immunoneutralization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility. Endocrinology 1997; 138:3065-68; PMID:9202254; http://dx.doi.org/10.1210/endo.138.7.5381
  • Moudgal NR, Murthy GS, Prasanna Kumar KM, Martin F, Suresh R, Medhamurthy R, Patil S, Sehgal S, Saxena BN. Responsiveness of human male volunteers to immunization with ovine follicle stimulating hormone vaccine: results of a pilot study. Hum Reprod 1997; 12:457-463; PMID:9130740; http://dx.doi.org/10.1093/humrep/12.3.457
  • Aravindan GR, Gopalakrishnan K, Ravindranath N, Moudgal NR. Effect of altering endogenous gonadotropin concentrations on the kinetics of testicular germ cell turnover in the bonnet monkey (Macaca radiata). J Endocrinol 1993; 137:485-95; PMID:8371078; http://dx.doi.org/10.1677/joe.0.1370485
  • van Alphen MMA, van de Kant HJG, de Rooij DG. Follicle-stimulating hormone stimulates spermatogenesis in the adult monkey. Endocrinology 1988; 129:1831-9.
  • Marshall GR, Zorub DS, Plant TM. Follicle-stimulating hormone amplifies the population of differentiated spermatogonia in the hypothysectomized testosterone-replaced adult rhesus monkey (Macaca mulatta). Endocrinology 1995; 136:3504-3511; PMID:7628387
  • Simorangkir DR, Ramaswamy S, Marshall GR, Pohl CR, Plant TM. A selective monotropic elevation of FSH, but not that of LH, amplifies the proliferation and differentiation of spermatogonia in the adult rhesus monkey (Macaca mulatta). Hum Reprod 2009; 24(7):1584-95; PMID:19279035; http://dx.doi.org/10.1093/humrep/dep052
  • Arslan M, Weinbauer GF, Schlatt S, Shahab M, Nieschlag E. FSH and testosterone, alone or in combination, initiate testicular growth and increase the number of spermatogonia and Sertoli cells in a juvenile non-human primate (Macaca mulatta). J Endocrinol 1993; 136(2):235-43; PMID:8459189; http://dx.doi.org/10.1677/joe.0.1360235
  • Ramaswamy S, Plant TM, Marshall GR. Pulsatile stimulation with recombinant single chain human luteinizing hormone elicits precocious Sertoli cell proliferation in the juvenile male rhesus monkey. Biol Reprod 2000; 63:82-88; PMID:10859245; http://dx.doi.org/10.1095/biolreprod63.1.82
  • Plant TM, Marshall GR. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr Rev 2001; 22(6):764-86; PMID:11739331; http://dx.doi.org/10.1210/edrv.22.6.0446
  • Phillip M, Arbelle JE, Segev Y, Parvari R. Male hypogonadism due to a mutation in the gene for the beta-subunit of follicle-stimulating hormone. N Engl J Med 1998; 338(24):1729-32; PMID:9624193; http://dx.doi.org/10.1056/NEJM199806113382404
  • Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson PO, Chatterjee K. Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med 1998; 36(8):663-5; PMID:9806482; http://dx.doi.org/10.1515/CCLM.1998.118
  • Layman LC, Porto AL, Xie J, da Motta LA, da Motta LD, Weiser W, Sluss PM. FSH beta gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia. J Clin Endocrinol Metab 2002; 87(8):3702-7; PMID:12161499
  • Mantovani G, Borgato S, Beck-Peccoz P, Romoli R, Borretta G, Persani L. Isolated follicle-stimulating hormone (FSH) deficiency in a young man with normal virilization who did not have mutations in the FSHbeta gene. Fertil Steril 2003; 79(2):434-6; PMID:12568861; http://dx.doi.org/10.1016/S0015-0282(02)04682-4
  • Giltay JC, Deege M, Blankenstein RA, Kastrop PM, Wijmenga C, Lock TT. Apparent primary follicle-stimulating hormone deficiency is a rare cause of treatable male infertility. Fertil Steril 2004; 81(3):693-6; PMID:15037424; http://dx.doi.org/10.1016/j.fertnstert.2003.07.030
  • Murao K, Imachi H, Muraoka T, Fujiwara M, Kushida Y, Haba R, Ishida T. Isolated follicle-stimulating hormone (FSH) deficiency without mutation of the FSHbeta gene and successful treatment with human menopausal gonadotropin. Fertil Steril 2008; 90(5):2012.e17-9; http://dx.doi.org/10.1016/j.fertnstert.2008.02.145
  • Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 1997; 15(2):205-6; PMID:9020851; http://dx.doi.org/10.1038/ng0297-205
  • Medhamurthy R, Suresh R, Paul SS, Moudgal NR. Evidence for follicle-stimulating hormone mediation in the hemiorchidectomy-induced compensatory increase in the function of the remaining testis of the adult male bonnet monkey (Macaca radiata). Biol Reprod 1995; 53(3):525-31; PMID:7578675; http://dx.doi.org/10.1095/biolreprod53.3.525
  • Ramaswamy S, Marshall GR, McNeilly AS, Plant TM. Dynamics of the follicle-stimulating hormone (FSH)-inhibin B feedback loop and its role in regulating spermatogenesis in the adult male rhesus monkey (Macaca mulatta) as revealed by unilateral orchidectomy. Endocrinology 2000; 141(1):18-27; PMID:10614619
  • Selice R, Ferlin A, Garolla A, Caretta N, Foresta C. Effects of endogenous FSH on normal human spermatogenesis in adults. Int J Androl 2011; 34:e511-7; PMID:21790654; http://dx.doi.org/10.1111/j.1365-2605.2010.01134.x
  • Johnston DS, Russell LD, Friel PJ, Griswold MD. Murine germ cells do not require functional androgen receptors to complete spermatogenesis following spermatogonial stem cell transplantation. Endocrinology 2001; 142(6):2405-8; PMID:11356688; http://dx.doi.org/10.1210/endo.142.6.8317
  • Hill CM, Anway MD, Zirkin BR, Brown TR. Intratesticular androgen levels, androgen receptor localization, and androgen receptor expression in adult rat Sertoli cells. Biol Reprod 2004; 71(4):1348-58; PMID:15215201; http://dx.doi.org/10.1095/biolreprod.104.029249
  • Zhou X, Kudo A, Kawakami H, Hirano H. Immunohistochemical localization of androgen receptor in mouse testicular germ cells during fetal and postnatal development. Anat Rec 1996; 245(3):509-18; PMID:8800409; http://dx.doi.org/10.1002/(SICI)1097-0185(199607)245:3%3c509::AID-AR7%3e3.0.CO;2-M
  • Pelletier G, Labrie C, Labrie F. Localization of oestrogen receptor alpha, oestrogen receptor beta and androgen receptors in the rat reproductive organs. J Endocrinol 2000; 165(2):359-70; PMID:10810300; http://dx.doi.org/10.1677/joe.0.1650359
  • Zhou Q, Nie R, Prins GS, Saunders PT, Katzenellenbogen BS, Hess RA. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl 2002; 23(6):870-81; PMID:12399534
  • Vornberger W, Prins G, Musto NA, Suarez-Quian CA. Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology 1994; 134(5):2307-16; PMID:8156934
  • Kimura N, Mizokami A, Oonuma T, Sasano H, Nagura H. Immunocytochemical localization of androgen receptor with polyclonal antibody in paraffin-embedded human tissues. J Histochem Cytochem 1993; 41(5):671-8; PMID:8468448; http://dx.doi.org/10.1177/41.5.8468448
  • McKinnell C, Saunders PT, Fraser HM, Kelnar CJ, Kivlin C, Morris KD, Sharpe RM. Comparison of androgen receptor and oestrogen receptor beta immunoexpression in the testes of the common marmoset (Callithrix jacchus) from birth to adulthood: low androgen receptor immunoexpression in Sertoli cells during the neonatal increase in testosterone concentrations. Reproduction 2001; 122(3):419-29; PMID:11597306; http://dx.doi.org/10.1530/rep.0.1220419
  • O'Donnell L, Meachem SJ, Stanton, PG, McLachlan RI. Endocrine regulation of spermatogenesis. In: Neill JD, editor; Plant TM, Pfaff DW, Challis JRG, de Kretser DM, Richards JS, Wassarman PM, section editors. Knobil and Neill's Physiology of Reproduction. Sydney, Australia: Elsevier; 2006. p. 1017-70.
  • Sharpe RM, Maddocks S, Kerr JB. Cell-cell interactions in the control of spermatogenesis as studied using Leydig cell destruction and testosterone replacement. Am J Anat 1990; 188(1):3-20; PMID:2161173; http://dx.doi.org/10.1002/aja.1001880103
  • Bartlett JM, Weinbauer GF, Nieschlag E. Differential effects of FSH and testosterone on the maintenance of spermatogenesis in the adult hypophysectomized rat. J Endocrinol 1989; 121(1):49-58; PMID:2497224; http://dx.doi.org/10.1677/joe.0.1210049
  • Rea MA, Marshall GR, Weinbauer GF, Nieschlag E. Testosterone maintains pituitary and serum FSH and spermatogenesis in gonadotrophin-releasing hormone antagonist-suppressed rats. J Endocronol 1986; 108(1):101-7; http://dx.doi.org/10.1677/joe.0.1080101
  • Sun YT, Irby DC, Robertson DM, de Kretser DM. The effects of exogenously administered testosterone on spermatogenesis in intact and hypophysectomized rats. Endocrinology 1989; 125(2):1000-10; PMID:2502373; http://dx.doi.org/10.1210/endo-125-2-1000
  • Sun Y-T, Wreford NG, Robertson DM, deKretser DM. Quantitative cytological studies of spermatogenesis in intact and hypophysectomized rats: Identification of androgen-dependent stages. Endocrinology 1990; 127(3):1215-1223; PMID:2117524; ; http://dx.doi.org/10.1210/endo-127-3-1215
  • Awoniyi CA, Santulli R, Chandrashekar V, Schanbacher BD, Zirkin BR. Quantitative restoration of advanced spermatogenic cells in adult male rats made azoospermic by active immunization against luteinizing hormone or gonadotropin-releasing hormone. Endocrinology 1989; 125(3):1303-9; PMID:2667955; http://dx.doi.org/10.1210/endo-125-3-1303
  • Awoniyi CA, Sprando RL, Santulli R, Chandrashekar V, Ewing LL, Zirkin BR. Restoration of spermatogenesis by exogenously administered testosterone in rats made azoospermic by hypophysectomy or withdrawal of luteinizing hormone alone. Endocrinology 1990; 127(1):177-84; PMID:2113863; http://dx.doi.org/10.1210/endo-127-1-177
  • Santulli R, Sprando RL, Awoniyi CA, Ewing LL, Zirkin BR. To what extent can spermatogenesis be maintained in the hypophysectomized adult rat testis with exogenously administered testosterone? Endocrinology 1990; 126(1):95-101; PMID:2294013; http://dx.doi.org/10.1210/endo-126-1-95
  • Sinha-Hikim AP, Swerdloff RS. Temporal and stage-specific changes in spermatogenesis of rat after gonadotropin deprivation by a potent gonadotropin-releasing hormone antagonist treatment. Endocrinology 1993; 133(5):2161-70; PMID:8404667
  • Hikim AP, Swerdloff RS. Temporal and stage-specific effects of recombinant human follicle-stimulating hormone on the maintenance of spermatogenesis in gonadotropin-releasing hormone antagonist-treated rat. Endocrinology 1995; 136(1):253-61; PMID:7828538
  • El Shennawy A, Gates RJ, Russell LD. Hormonal regulation of spermatogenesis in the hypophysectomized rat: cell viability after hormonal replacement in adults after intermediate periods of hypophysectomy. J Androl 1998; 19(3):320-34; discussion 41-2; PMID:9639049
  • Franca LR, Parreira GG, Gates RJ, Russell LD. Hormonal regulation of spermatogenesis in the hypophysectomized rat: quantitation of germ-cell population and effect of elimination of residual testosterone after long-term hypophysectomy. J Androl 1998; 19(3):335-40; PMID:9639050
  • Ma X, Dong Y, Matzuk MM, Kumar TR. Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci U S A 2004; 101(49):17294-9; PMID:15569941; http://dx.doi.org/10.1073/pnas.0404743101
  • Ahtiainen P, Rulli S, Pakarainen T, Zhang FP, Poutanen M, Huhtaniemi I. Phenotypic characterisation of mice with exaggerated and missing LH/hCG action. Mol Cell Endocrinol 2007; 260-262: 255-63.
  • Zhang FP, Poutanen M, Wilbertz J, Huhtaniemi I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol 2001; 15(1):172-83; PMID:11145748; http://dx.doi.org/10.1210/mend.15.1.0582
  • Zhang FP, Pakarainen T, Poutanen M, Toppari J, Huhtaniemi I. The low gonadotropin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proc Natl Acad Sci U S A 2003; 100(23):13692-7; PMID:14585929; http://dx.doi.org/10.1073/pnas.2232815100
  • Lei ZM, Mishra S, Ponnuru P, Li X, Yang ZW, Rao Ch V. Testicular phenotype in luteinizing hormone receptor knockout animals and the effect of testosterone replacement therapy. Biol Reprod 2004; 71(5):1605-13; PMID:15253923; http://dx.doi.org/10.1095/biolreprod.104.031161
  • Pakarainen T, Zhang FP, Makela S, Poutanen M, Huhtaniemi I. Testosterone replacement therapy induces spermatogenesis and partially restores fertility in luteinizing hormone receptor knockout mice. Endocrinology 2005; 146(2):596-606; PMID:15514086; http://dx.doi.org/10.1210/en.2004-0913
  • O'Shaughnessy PJ, Morris ID, Huhtaniemi I, Baker PJ, Abel MH. Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: data from mutant and genetically modified mice. Mol Cell Endocrinol 2009; 306(1-2):2-8; PMID:19059463; http://dx.doi.org/10.1016/j.mce.2008.11.005
  • McGee SR, Narayan P. Precocious puberty and Leydig cell hyperplasia in male mice with a gain of function mutation in the LH receptor gene. Endocrinology 2013; 154(10):3900-13; PMID:23861372; http://dx.doi.org/10.1210/en.2012-2179
  • Ochsenkuhn R, De Kretser DM. The contributions of deficient androgen action in spermatogenic disorders. Int J Androl 2003; 26(4):195-201; PMID:12846794; http://dx.doi.org/10.1046/j.1365-2605.2003.00381.x
  • Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 2009; 30(2):119-32; PMID:19176467; http://dx.doi.org/10.1210/er.2008-0025
  • Verhoeven G, Willems A, Denolet E, Swinnen JV, De Gendt K. Androgens and spermatogenesis: lessons from transgenic mouse models. Philos Trans R Soc Lond Biol Sci 2010; 365(1546):1537-56; http://dx.doi.org/10.1098/rstb.2009.0117
  • Walters KA, Simanainen U, Handelsman DJ. Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 2010; 16(5):543-558; PMID:20231167; http://dx.doi.org/10.1093/humupd/dmq003
  • Rey RA, Grinspon RP. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract Res Clin Endocrinol Metab 2011; 25(2):221-38; PMID:21397195; http://dx.doi.org/10.1016/j.beem.2010.08.013
  • Hughes IA, Werner R, Bunch T, Hiort O. Androgen insensitivity syndrome. Semin Reprod Med 2012; 30(5):432-42; PMID:23044881; http://dx.doi.org/10.1055/s-0032-1324728
  • Willems A, De Gendt K, Deboel L, Swinnen JV, Verhoeven G. The development of an inducible androgen receptor knockout model in mouse to study the postmeiotic effects of androgens on germ cell development. Spermatogenesis 2011; 1(4):341-53; PMID:22332118; http://dx.doi.org/10.4161/spmg.1.4.18740
  • Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X, et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 2002; 99(21):13498-503; PMID:12370412; http://dx.doi.org/10.1073/pnas.212474399
  • Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Guillou F, Lardy H, Yeh S. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 2004; 101(18):6876-81; PMID:15107499; http://dx.doi.org/10.1073/pnas.0307306101
  • De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lécureuil C, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 2004; 101(5):1327-32; PMID:14745012; http://dx.doi.org/10.1073/pnas.0308114100
  • Zhang C, Yeh S, Chen YT, Wu CC, Chuang KH, Lin HY, Wang RS, Chang YJ, Mendis-Handagama C, Hu L, et al. Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc Natl Acad Sci U S A 2006; 103(47):17718-23; PMID:17095600; http://dx.doi.org/10.1073/pnas.0608556103
  • Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 2009; 23(12):4218-30; PMID:19692648; http://dx.doi.org/10.1096/fj.09-138347
  • O'Shaughnessy PJ, Monteiro A, Abel M. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. PLoS One 2012; 7(4):e35136; PMID:22514715; http://dx.doi.org/10.1371/journal.pone.0035136
  • De Gendt K, Atanassova N, Tan KA, de Franca LR, Parreira GG, McKinnell C, Sharpe RM, Saunders PT, Mason JI, Hartung S, et al. Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology 2005; 146(9):4117-26; PMID:15919750; http://dx.doi.org/10.1210/en.2005-0300
  • Xu Q, Lin HY, Yeh SD, Yu IC, Wang RS, Chen YT, Zhang C, Altuwaijr S, Chen LM, Chuang KH, et al. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine 2007; 32(1):96-106; PMID:17955388; http://dx.doi.org/10.1007/s12020-007-9015-0
  • O'Hara L, Smith LB. Androgen receptor signalling in Vascular Endothelial cells is dispensable for spermatogenesis and male fertility. BMC Res Notes 2012; 5:16; PMID:22230795; http://dx.doi.org/10.1186/1756-0500-5-16
  • Bint Akhtar F, Weinbauer GF, Nieschlag E. Acute and chronic effects of a gonadotrophin-releasing hormone antagonist on pituitary and testicular function in monkeys. J Endocrinol 1985; 104(3):345-54; PMID:3882872; http://dx.doi.org/10.1677/joe.0.1040345
  • Weinbauer GF, Respondek M, Themann H, Nieschlag E. Reversibility of long-term effects of GnRH agonist administration on testicular histology and sperm production in the nonhuman primate. J Androl 1987; 8(5):319-29; PMID:2959641
  • Weinbauer GF, Gockeler E, Nieschlag E. Testosterone prevents complete suppression of spermatogenesis in the gonadotropin-releasing hormone antagonist-treated nonhuman primate (Macaca fascicularis). J Clin Endocrinol Metab 1988; 67(2):284-90; PMID:3292557; http://dx.doi.org/10.1210/jcem-67-2-284
  • Weinbauer GF, Behre HM, Fingscheidt U, Nieschlag E. Human follicle-stimulating hormone exerts a stimulatory effect on spermatogenesis, testicular size, and serum inhibin levels in the gonadotropin-releasing hormone antagonist-treated nonhuman primate (Macaca fascicularis). Endocrinology 1991; 129(4):1831-9; PMID:1915071; http://dx.doi.org/10.1210/endo-129-4-1831
  • Weinbauer GF, Limberger A, Behre HM, Nieschlag E. Can testosterone alone maintain the gonadotrophin-releasing hormone antagonist-induced suppression of spermatogenesis in the non-human primate? J endocrinol 1994; 142(3):485-95; PMID:7964300; http://dx.doi.org/10.1677/joe.0.1420485
  • Bremner WJ, Bagatell CJ, Steiner RA. Gonadotropin-releasing hormone antagonist plus testosterone: a potential male contraceptive. J Clin Endocrinol Metab 1991; 73(3):465-9; PMID:1874925; http://dx.doi.org/10.1210/jcem-73-3-465
  • Zhengwei Y, Wreford NG, Schlatt S, Weinbauer GF, Nieschlag E, McLachlan RI. Acute and specific impairment of spermatogonial development by GnRH antagonist-induced gonadotrophin withdrawal in the adult macaque (Macaca fascicularis). J Reprod Fertil 1998; 112(1):139-47; PMID:9538339; http://dx.doi.org/10.1530/jrf.0.1120139
  • Marshall GR, Wickings EJ, Ludecke DK, Nieschlag E. Stimulation of spermatogenesis in stalk-sectioned rhesus monkeys by testosterone alone. J Clin Endocrinol Metab 1983; 57(1):152-9; PMID:6853673; http://dx.doi.org/10.1210/jcem-57-1-152
  • Marshall GR, Jockenhovel F, Ludecke D, Nieschlag E. Maintenance of complete but quantitatively reduced spermatogenesis in hypophysectomized monkeys by testosterone alone. ACTA Endocrinol (Copenh) 1986; 113(3):424-31; PMID:3788416
  • Marshall GR, Ramaswamy S, Plant TM. Gonadotropin-independent proliferation of the pale type A spermatogonia in the adult rhesus monkey (Macaca mulatta). Biol Reprod 2005; 73(2):222-9; PMID:15758149; http://dx.doi.org/10.1095/biolreprod.104.038968
  • Smith PE. Maintenance and restoration of spermatogenesis in hypophysectomized Rhesus monkeys by androgen administration. Yale J Biol Med 1944; 17(1):281-7; PMID:21434199
  • Pavlou SN, Brewer K, Farley MG, Lindner J, Bastias MC, Rogers BJ, Swift LL, Rivier JE, Vale WW, Conn PM, et al. Combined administration of a gonadotropin-releasing hormone antagonist and testosterone in men induces reversible azoospermia without loss of libido. J Clin Endocrinol Metab 1991; 73(6):1360-9; PMID:1955518; http://dx.doi.org/10.1210/jcem-73-6-1360
  • Tom L, Bhasin S, Salameh W, Steiner B, Peterson M, Sokol RZ, Rivier J, Vale W, Swerdloff RS. Induction of azoospermia in normal men with combined Nal-Glu gonadotropin-releasing hormone antagonist and testosterone enanthate. J Clin Endocrinol Metab 1992; 75(2):476-83; PMID:1639948
  • Bagatell CJ, Matsumoto AM, Christensen RB, Rivier JE, Bremner WJ. Comparison of a gonadotropin releasing-hormone antagonist plus testosterone (T) versus T alone as potential male contraceptive regimens. J Clin Endocrinol Metab 1993; 77(2):427-32; PMID:8345047
  • Swerdloff RS, Bagatell CJ, Wang C, Anawalt BD, Berman N, Steiner B, Bremner WJ. Suppression of spermatogenesis in man induced by Nal-Glu gonadotropin releasing hormone antagonist and testosterone enanthate (TE) is maintained by TE alone. J Clin Endocrinol Metab 1998; 83(10):3527-33; PMID:9768659
  • Behre HM, Kliesch S, Lemcke B, von Eckardstein S, Nieschlag E. Suppression of spermatogenesis to azoospermia by combined administration of GnRH antagonist and 19-nortestosterone cannot be maintained by this non-aromatizable androgen alone. Hum Reprod 2001; 16(12):2570-7; PMID:11726576; http://dx.doi.org/10.1093/humrep/16.12.2570
  • Matthiesson KL, Amory JK, Berger R, Ugoni A, McLachlan RI, Bremner WJ. Novel male hormonal contraceptive combinations: the hormonal and spermatogenic effects of testosterone and levonorgestrel combined with a 5alpha-reductase inhibitor or gonadotropin-releasing hormone antagonist. J Clin Endocrinol Metab 2005; 90(1):91-7; PMID:15509637; http://dx.doi.org/10.1210/jc.2004-1228
  • McLachlan RI, O'Donnell L, Meachem SJ, Stanton PG, de K, Pratis K, Robertson DM. Hormonal regulation of spermatogenesis in primates and man: insights for development of the male hormonal contraceptive. J Androl 2002; 23(2):149-62; PMID:11868805
  • Walton M, Anderson RA. Update on the male hormonal contraceptive agents. Expert Opin Investig Drugs 2004; 13(9):1123-33; PMID:15330744; http://dx.doi.org/10.1517/13543784.13.9.1123
  • Matthiesson KL, McLachlan RI. Male hormonal contraception: concept proven, product in sight? Hum Reprod Update 2006; 12(4):463-82; PMID:16597629; http://dx.doi.org/10.1093/humupd/dml010
  • Page ST, Amory JK, Bremner WJ. Advances in male contraception. Endocr Rev 2008; 29(4):465-93; PMID:18436704; http://dx.doi.org/10.1210/er.2007-0041
  • Weinbauer GF, Schlatt S, Walter V, Nieschlag E. Testosterone-induced inhibition of spermatogenesis is more closely related to suppression of FSH than to testicular androgen levels in the cynamolgus monkey model (Macaca fascicularis). J Endocrinol 2001; 168(1):25-38; PMID:11139767; http://dx.doi.org/10.1677/joe.0.1680025
  • Narula A, Gu YQ, O’Donnell L, Stanton PG, Robertson DM, McLachlan RI, Bremner WJ. Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle stimulating hormone suppression and not to intratesticular androgens. J Clin Endocr Metab 2002; 87(7):3399-406; PMID:12107257; http://dx.doi.org/10.1210/jcem.87.7.8681
  • O’Donnell L, Narula A, Balourdos G, Gu YQ, Wreford NG, Robertson DM, Bremner WJ, McLachlan RI. Impairment of spermatogonial development and spermiation after testosterone-induced gonadotropin suppression in adult monkeys (Macaca fascicularis). J Clin Endocrinol Metab 2001; 86(4):1814-22.
  • Axelrod L, Neer RM, Kliman B. Hypogonadism in a male with immunologically active, biologically inactive luteinizing hormone: an exception to a venerable rule. J Clin Endocrinol Metab 1979; 48(2):279-87; PMID:429481; http://dx.doi.org/10.1210/jcem-48-2-279
  • Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med 1992; 326(3):179-83; PMID:1727547; http://dx.doi.org/10.1056/NEJM199201163260306
  • Valdes-Socin H, Salvi R, Daly AF, Gaillard RC, Quatresooz P, Tebeu PM, Pralong FP, Beckers A. Hypogonadism in a patient with a mutation in the luteinizing hormone beta-subunit gene. N Engl J Med 2004; 351(25):2619-25; PMID:15602022; http://dx.doi.org/10.1056/NEJMoa040326
  • Lofrano-Porto A, Barra GB, Giacomini LA, Nascimento PP, Latronico AC, Casulari LA, da Rocha Neves Fde A. Luteinizing hormone beta mutation and hypogonadism in men and women. N Eng J Med 2007; 357(9):897-904; PMID:17761593; http://dx.doi.org/10.1056/NEJMoa071999
  • Basciani S, Watanabe M, Mariani S, Passeri M, Persichetti A, Fiore D, Scotto d/Abusco A, Caprio M, Lenzi A, Fabbri A, et al. Hypogonadism in a patient with two novel mutations of the luteinizing hormone beta-subunit gene expressed in a compound heterozygous form. J Clin Endocrinol Metab 2012; 97(9):3031-38; PMID:22723313; http://dx.doi.org/10.1210/jc.2012-1986
  • Berthezene F, Forest MG, Grimaud JA, Claustrat B, Mornex R. Leydig-cell agenesis: a cause of male pseudohermaphroditism. N Eng J Med 1976; 295(18):969-72; http://dx.doi.org/10.1056/NEJM197610282951801
  • Gromoll J, Eiholzer U, Nieschlag E, Simoni M. Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: differential action of human chorionic gonadotropin and LH. J Clin Endocrinol Metab 2000; 85(6):2281-6; PMID:10852464; http://dx.doi.org/10.1210/jcem.85.6.6636
  • Martens JW, Lumbroso S, Verhoef-Post M, Georget V, Richter-Unruh A, Szarras-Czapnik M, Romer TE, Brunner HG, Themmen AP, Sultan Ch. Mutant luteinizing hormone receptors in a compound heterozygous patient with complete Leydig cell hypoplasia: abnormal processing causes signaling deficiency. J Clin Endocrinol Metab 2002; 87(6):2506-13; PMID:12050206; http://dx.doi.org/10.1210/jcem.87.6.8523
  • Richter-Unruh A, Martens JW, Verhoef-Post M, Wessels HT, Kors WA, Sinnecker GH, Boehmer A, Drop SL, Toledo SP, Brunner HG, Themmen AP. Leydig cell hypoplasia: cases with new mutations, new polymorphisms and cases without mutations in the luteinizing hormone receptor gene. Clin Endocrinol 2002; 56(1):103-12; http://dx.doi.org/10.1046/j.0300-0664.2001.01437.x
  • Richter-Unruh A, Korsch E, Hiort O, Holterhus PM, Themmen AP, Wudy SA. Novel insertion frameshift mutation of the LH receptor gene: problematic clinical distinction of Leydig cell hypoplasia from enzyme defects primarily affecting testosterone biosynthesis. Eur J Endocrinol 2005; 152(2):255-9; PMID:15745934; http://dx.doi.org/10.1530/eje.1.01852
  • Qiao J, Han B, Liu BL, Chen X, Ru Y, Cheng KX, Chen FG, Zhao SX, Liang J, Lu YL, et al. A splice site mutation combined with a novel missense mutation of LHCGR cause male pseudohermaphroditism. Hum Mutat 2009; 30(9):e855-65; PMID:19551906; http://dx.doi.org/10.1002/humu.21072
  • Simoni M, Tuttelmann F, Michel C, Bockenfeld Y, Nieschlag E, Gromoll J. Polymorphisms of the luteinizing hormone/chorionic gonadotropin receptor gene: association with maldescended testes and male infertility. Pharmacogenet Genomics 2008; 18(3):193-200; PMID:18300940; http://dx.doi.org/10.1097/FPC.0b013e3282f4e98c
  • Richard N, Leprince C, Gruchy N, Pigny P, Andrieux J, Mittre H, Manouvrier S, Lahlou N, Weill J, Kottler ML. Identification by array-Comparative Genomic Hybridization (array-CGH) of a large deletion of luteinizing hormone receptor gene combined with a missense mutation in a patient diagnosed with a 46,XY disorder of sex development and application to prenatal diagnosis. Endocr J 2011; 58(9):769-76; PMID:21720050; http://dx.doi.org/10.1507/endocrj.K11E-119
  • Kossack N, Troppmann B, Richter-Unruh A, Kleinau G, Gromoll J. Aberrant transcription of the LHCGR gene caused by a mutation in exon 6A leads to Leydig cell hypoplasia type II. Mol Cell Endocrinol 2013; 366(1):59-67; PMID:23232123; http://dx.doi.org/10.1016/j.mce.2012.11.018
  • Themmen AP. An update of the pathophysiology of human gonadotrophin subunit and receptor gene mutations and polymorphisms. Reproduction 2005; 130(3):263-74; PMID:16123233; http://dx.doi.org/10.1530/rep.1.00663
  • Latronico AC, Arnhold IJ. Inactivating mutations of the human luteinizing hormone receptor in both sexes. Semin Reprod Med 2012; 30(5):382-6; PMID:23044874; http://dx.doi.org/10.1055/s-0032-1324721
  • Steinberger E, Root A, Ficher M, Smith KD. The role of androgens in the initiation of spermatogenesis in man. J Clin Endocrinol Metab 1973; 37(5):746-51; PMID:4749448; http://dx.doi.org/10.1210/jcem-37-5-746
  • Shenker A, Laue L, Kosugi S, Merendino JJ, Jr., Minegishi T, Cutler GB, Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993; 365(6447):652-4; PMID:7692306; http://dx.doi.org/10.1038/365652a0
  • Latronico AC, Shinozaki H, Guerra G, Jr., Pereira MA, Lemos Marini SH, Baptista MT, Arnhold IJ, Fanelli F, Mendonca BB, Segaloff DL. Gonadotropin-independent precocious puberty due to luteinizing hormone receptor mutations in Brazilian boys: a novel constitutively activating mutation in the first transmembrane helix. J Clin Endocrinol Metab 2000; 85(12):4799-805; PMID:11134146
  • Soriano-Guillen L, Lahlou N, Chauvet G, Roger M, Chaussain JL, Carel JC. Adult height after ketoconazole treatment in patients with familial male-limited precocious puberty. J Clin Endocrinol Metab 2005; 90(1):147-51; PMID:15522928; http://dx.doi.org/10.1210/jc.2004-1438
  • Soriano-Guillen L, Mitchell V, Carel JC, Barbet P, Roger M, Lahlou N. Activating mutations in the luteinizing hormone receptor gene: a human model of non-follicle-stimulating hormone-dependent inhibin production and germ cell maturation. J Clin Endocrinol Metab 2006; 91(8):3041-7; PMID:16684832; http://dx.doi.org/10.1210/jc.2005-2564
  • Nagasaki K, Katsumata N, Ogawa Y, Kikuchi T, Uchiyama M. Novel C617Y mutation in the 7th transmembrane segment of luteinizing hormone/choriogonadotropin receptor in a Japanese boy with peripheral precocious puberty. Endocr J 2010; 57(12):1055-60; PMID:21060208; http://dx.doi.org/10.1507/endocrj.K10E-227
  • Liu G, Duranteau L, Carel JC, Monroe J, Doyle DA, Shenker A. Leydig-cell tumors caused by an activating mutation of the gene encoding the luteinizing hormone receptor. N Eng J Med 1999; 341(23):1731-6; http://dx.doi.org/10.1056/NEJM199912023412304
  • Zarrilli S, Lombardi G, Paesano L, Di Somma C, Colao A, Mirone V, De Rosa M. Hormonal and seminal evaluation of Leydig cell tumour patients before and after orchiectomy. Andrologia 2000; 32(3):147-54; PMID:10863969; http://dx.doi.org/10.1046/j.1439-0272.2000.00356.x
  • Richter-Unruh A, Wessels HT, Menken U, Bergmann M, Schmittmann-Ohters K, Schaper J, Tappeser S, Hauffa BP. Male LH-independent sexual precocity in a 3.5-year-old boy caused by a somatic activating mutation of the LH receptor in a Leydig cell tumor. J Clin Endocrinol Metab 2002; 87(3):1052-6; PMID:11889161; http://dx.doi.org/10.1210/jcem.87.3.8294
  • Canto P, Soderlund D, Ramon G, Nishimura E, Mendez JP. Mutational analysis of the luteinizing hormone receptor gene in two individuals with Leydig cell tumors. Am J Med Genet 2002; 108(2):148-52; PMID:11857565; http://dx.doi.org/10.1002/ajmg.10218
  • Sangkhathat S, Kanngurn S, Jaruratanasirikul S, Tubtawee T, Chaiyapan W, Patrapinyokul S, Chiengkriwate P. Peripheral precocious puberty in a male caused by Leydig cell adenoma harboring a somatic mutation of the LHR gene: report of a case. J Med Assoc Thai 2010; 93(9):1093-7; PMID:20873084
  • Boot AM, Lumbroso S, Verhoef-Post M, Richter-Unruh A, Looijenga LH, Funaro A, Beishuizen A, van Marle A, Drop SL, Themmen AP. Mutation analysis of the LH receptor gene in Leydig cell adenoma and hyperplasia and functional and biochemical studies of activating mutations of the LH receptor gene. J Clin Endocrinol Metab 2011; 96(7):e1197-205; PMID:21490077; http://dx.doi.org/10.1210/jc.2010-3031
  • Shenker A. Activating mutations of the lutropin choriogonadotropin receptor in precocious puberty. Receptors Channels 2002; 8(1):3-18; PMID:12408104; http://dx.doi.org/10.1080/10606820212138
  • Polepalle SK, Shabaik A, Alagiri M. Leydig cell tumor in a child with spermatocyte maturation and no pseudoprecocious puberty. Urology 2003; 62(3):551; PMID:12946772; http://dx.doi.org/10.1016/S0090-4295(03)00469-2
  • Cajaiba MM, Reyes-Mugica M, Rios JC, Nistal M. Non-tumoural parenchyma in Leydig cell tumours: pathogenetic considerations. Int J Androl 2008; 31(3):331-6; PMID:17573846; http://dx.doi.org/10.1111/j.1365-2605.2007.00774.x
  • O'Grady MJ, McGrath N, Quinn FM, Capra ML, McDermott MB, Murphy NP. Spermatogenesis in a prepubertal boy. J Pediatr 2012; 161(2):369- e1; PMID:22575252; http://dx.doi.org/10.1016/j.jpeds.2012.03.040
  • Marshall GR, Wickings EJ, Nieschlag E. Testosterone can initiate spermatogenesis in an immature nonhuman primate, Macaca fascicularis. Endocrinology 1984; 114(6):2228-33; PMID:6723580; http://dx.doi.org/10.1210/endo-114-6-2228
  • Jarow JP, Zirkin BR. The androgen microenvironment of the human testis and hormonal control of spermatogenesis. Ann N Y Acad Sci 2005; 1061:208-20; PMID:16467270; http://dx.doi.org/10.1196/annals.1336.023
  • Page ST. Physiologic role and regulation of intratesticular sex steroids. Curr Opin Endocrinol Diabetes Obes 2011; 18(3):217-23; PMID:21478750; http://dx.doi.org/10.1097/MED.0b013e328345d50e
  • Singh J, O'Neill C, Handelsman DJ. Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 1995; 136(12):5311-21; PMID:7588276
  • Spaliviero JA, Jimenez M, Allan CM, Handelsman DJ. Luteinizing hormone receptor-mediated effects on initiation of spermatogenesis in gonadotropin-deficient (hpg) mice are replicated by testosterone. Biol Reprod 2004; 70(1):32-8; PMID:12954730; http://dx.doi.org/10.1095/biolreprod.103.019398
  • Huang HF, Marshall GR, Rosenberg R, Nieschlag E. Restoration of spermatogenesis by high levels of testosterone in hypophysectomized rats after long-term regression. Acta Endocrinol (Copenh) 1987; 116(4):433-44; PMID:3425158
  • Zirkin BR, Santulli R, Awoniyi CA, Ewing LL. Maintenance of advanced spermatogenic cells in the adult rat testis: quantitative relationship to testosterone concentration within the testis. Endocrinology 1989; 124(6):3043-9; PMID:2498065; http://dx.doi.org/10.1210/endo-124-6-3043
  • Bruysters M, Christin-Maitre S, Verhoef-Post M, Sultan C, Auger J, Faugeron I, Larue L, Lumbroso S, Themmen AP, Bouchard P. A new LH receptor splice mutation responsible for male hypogonadism with subnormal sperm production in the propositus, and infertility with regular cycles in an affected sister. Hum Reprod 2008; 23(8):1917-23; PMID:18508780; http://dx.doi.org/10.1093/humrep/den180
  • Achard C, Courtillot C, Lahuna O, Meduri G, Soufir JC, Liere P, Bachelot A, Benyounes H, Schumacher M, Kuttenn F, et al. Normal spermatogenesis in a man with mutant luteinizing hormone. N Engl J Med 2009; 361(19):1856-63; PMID:19890128; http://dx.doi.org/10.1056/NEJMoa0805792
  • Coviello AD, Bremner WJ, Matsumoto AM, Herbst KL, Amory JK, Anawalt BD, Yan X, Brown TR, Wright WW, Zirkin BR, et al. Intratesticular testosterone concentrations comparable with serum levels are not sufficient to maintain normal sperm production in men receiving a hormonal contraceptive regimen. J Androl 2004; 25(6):931-8; PMID:15477366
  • Handelsman DJ, Spaliviero JA, Simpson JM, Allan CM, Singh J. Spermatogenesis without gonadotropins: maintenance has a lower testosterone threshold than initiation. Endocrinology 1999; 140(9):3938-46; PMID:10465262
  • Depenbusch M, von Eckardstein S, Simoni M, Nieschlag E. Maintenance of spermatogenesis in hypogonadotropic hypogonadal men with human chorionic gonadotropin alone. Eur J Endocrinol 2002; 147(5):617-24; PMID:12444893; http://dx.doi.org/10.1530/eje.0.1470617
  • Walker WH. Non-classical actions of testosterone and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1557-69; PMID:20403869; http://dx.doi.org/10.1098/rstb.2009.0258
  • Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 2011; 1(2):116-120; PMID:22319659; http://dx.doi.org/10.4161/spmg.1.2.16956
  • Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 2014; 30:2-13; PMID:24598768; http://dx.doi.org/10.1016/j.semcdb.2014.02.012
  • McLachlan RI, O’Donnell L, Meachem SJ, Stanton PG, deKretser DM, Pratis K, Robertson DM. Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res 2002; 57:149-79; PMID:12017541; http://dx.doi.org/10.1210/rp.57.1.149
  • Holdcraft RW, Braun RE. Hormonal regulation of spermatogenesis. Int J Androl 2004; 27:335-342; PMID:15595952; http://dx.doi.org/10.1111/j.1365-2605.2004.00502.x
  • Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol 2008; 109:323-30; PMID:18400489; http://dx.doi.org/10.1016/j.jsbmb.2008.03.004
  • Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol 2010; 205:117-31; PMID:20144980; http://dx.doi.org/10.1677/JOE-10-0025
  • O’Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 2014; 29:55-65; http://dx.doi.org/10.1016/j.semcdb.2014.02.010
  • Schlatt S, Ehmcke J. Regulation of spermatogenesis: An evolutionary bioligist's perspective. Semin Cell Dev Biol 2014; 29:2-16; PMID:24685618; http://dx.doi.org/10.1016/j.semcdb.2014.03.007
  • Chellman GJ, Bussiere JL, Makori N, Martin PL, Ooshima Y, Weinbauer GF. Developmental and reproductive toxicology studies in nonhuman primates. Birth Defects Res B Dev Reprod Toxicol 2009; 86:446-62; PMID:20025046; http://dx.doi.org/10.1002/bdrb.20216
  • Chapin RE, Creasy DM. Assessment of circulating hormones in regulatory toxicity studies II: Male reproductive hormones. Toxicol Pathol 2012; 40:1063-78; PMID:22552397; http://dx.doi.org/10.1177/0192623312443321
  • Weinbauer GF, Schubert, J, Yeung CH, Rosiepen G, Nieschlag E. Gonadotrophin-releasing hormone antagonist arrests premeiotic germ cell proliferation but does not inhibit meiosis in the male monkey: a quantitative analysis using 5-bromodeoxyuridine and dual parameter flow cytometry. J Endocrinol 1988; 156:23-34; http://dx.doi.org/10.1677/joe.0.1560023
  • Sharpe RM, Kerr JB, Cooper I, Bartlett JM. Intratesticular factors and testosterone secretion: the effect of treatment with ethane dimethanesulphonate (EDS) and the induction of seminiferous tubule damage. Int J Androl 1986; 9:285-98; PMID:2879801; http://dx.doi.org/10.1111/j.1365-2605.1986.tb00891.x
  • Vickery BH, McRae GI, Briones W, Worden A, Seidenberg R, Schanbacher BD, Falvo R. Effects of an LHRH agonist upon sexual function in male dogs. Suppression, reversibility, and effect of testosterone replacement. J Androl 1984; 5:28-42; PMID:6231277
  • Goericke-Pesch S, Spang A, Schulz M, Oezalp G, Bergmann M, Hoffman B. Recrudescence of spermatogenesis in the dog following downregulation using a slow release GnRH agonist implant. Reprod Domest Anim 2009; 44:302-8; http://dx.doi.org/10.1111/j.1439-0531.2009.01378.x
  • Cavitte J-Ch, Lahlou N, Mialot J-P, Mondain-Monval M, Mialot M, Nahoul K, Morel Ch, Roger M, Schally AV. Reversible effects of long-term treatment with D-Trp6-LH-RH-microcapsules on pituitary-gonadal axis, spermatogenesis and prostate morphology in adolescent and adult dogs. Andrologia 1988; 20:249-63; PMID:2972232; http://dx.doi.org/10.1111/j.1439-0272.1988.tb01066.x
  • Ludwig C, Desmoulins PO, Drinacourt MA, Goericke-Pesch S, Hoffman B. Reversible downregulation of endocrine and germinative testicular function (hormonal castration) in the dog with the GnRH-agonist azagly-nafarelin as a removable implant "Gonazon" a preclinical trial. Theriogeniology 2009; 71:1037-45; http://dx.doi.org/10.1016/j.theriogenology.2008.10.015
  • Goericke-Pesch S, Ludwig C, Hoffmann B. Development of semen quality following reversible downregulation of testicular function in male dogs with a GnRH agonist implant. Reprod Domest Anim 2012; 47:625-8; PMID:22050326; http://dx.doi.org/10.1111/j.1439-0531.2011.01933.x
  • Foote RH, Swierstra EE, Hunt WL. Spermatogenesis in the dog. Anat Rec 173:341-51; PMID:5039087; http://dx.doi.org/10.1002/ar.1091730309
  • Ku WW, Pagliusi F, Foley G, Roesler A, Zimmerman T. A simple orchidometric method for the preliminary assessment of maturity status in male cynomolgus monkeys (Macaca fascicularis) used for nonclinical safety studies. J Pharmacol Toxicol 2010; 61:32-7; http://dx.doi.org/10.1016/j.vascn.2009.10.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.