803
Views
0
CrossRef citations to date
0
Altmetric
Articles

Formulating biomass allometric model for Paraserianthes falcataria (L) Nielsen (Sengon) in smallholder plantations, Central Kalimantan, Indonesia

, , , , &
Pages 268-284 | Received 03 May 2023, Accepted 02 Sep 2023, Published online: 12 Sep 2023

References

  • Alvarez E, Duque A, Saldarriaga J, Cabrera K, de Las Salas G, del Valle I, Lema A, Moreno F, Orrego S, Rodríguez L. 2012. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecol Manage. 267:297–308. doi: 10.1016/j.foreco.2011.12.013.
  • Anitha K, Verchot LV, Joseph S, Herold M, Manuri S, Avitabile V. 2015. A review of forest and tree plantation biomass equations in Indonesia. Ann Forest Sci. 72(8):981–997. doi: 10.1007/s13595-015-0507-4.
  • Aukland L, Costa PM, Brown S. 2003. A conceptual framework and its application for addressing leakage: the case of avoided deforestation. Climate Policy. 3(2):123–136. doi: 10.1016/S1469-3062(02)00065-7.
  • Basuki TM, Van Laake PE, Skidmore AK, Hussin YA. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecol Manage. 257(8):1684–1694. doi: 10.1016/j.foreco.2009.01.027.
  • Bi H, Turner J, Lambert MJ. 2004. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees. 18(4):467–479. doi: 10.1007/s00468-004-0333-z.
  • Birdsey R, Angeles-Perez G, Kurz WA, Lister A, Olguin M, Pan Y, Wayson C, Wilson B, Johnson K. 2013. Approaches to monitoring changes in carbon stocks for REDD+. Carbon Manage. 4(5):519–537. doi: 10.4155/cmt.13.49.
  • Böttcher H, Eisbrenner K, Fritz S, Kindermann G, Kraxner F, McCallum I, Obersteiner M. 2009. An assessment of monitoring requirements and costs of reduced emissions from deforestation and degradation. Carbon Balance Manage. 4(1):1–14. doi: 10.1186/1750-0680-4-7.
  • van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS. 2011. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. Forest Ecol Manage. 262(8):1648–1657. doi: 10.1016/j.foreco.2011.07.018.
  • Broich M, Hansen M, Stolle F, Potapov P, Margono BA, Adusei B. 2011. Remotely sensed forest cover loss shows high spatial and temporal variation across Sumatera and Kalimantan, Indonesia 2000–2008. Environ Res Lett. 6(1):014010. doi: 10.1088/1748-9326/6/1/014010.
  • Brown S. 1997. Estimating biomass and biomass change of tropical forests: a primer. UN FAO Forestry Paper 134. Rome: Food and Agriculture Org.
  • Brown S. 2002. Measuring carbon in forests: current status and future challenges. Environ Pollut. 116(3):363–372. doi: 10.1016/s0269-7491(01)00212-3.
  • Brown S, Gillespie AJR, Lugo AE. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Sci. 35(4):881–902.
  • Budiman I, Purnawati R, Siruru H, Hadi YS. 2020. Physical and mechanical properties of five Indonesian wood treated with polystyrene. IOP Conf Ser: Earth Environ Sci. 572(1):012039. doi: 10.1088/1755-1315/572/1/012039.
  • Carvalho JP, Parresol BR. 2003. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manage. 179(1–3):269–276. doi: 10.1016/S0378-1127(02)00549-2.
  • Chambers JQ, dos Santos J, Ribeiro RJ, Higuchi N. 2001. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecol Manage. 152(1–3):73–84. doi: 10.1016/S0378-1127(00)00591-0.
  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145(1):87–99. doi: 10.1007/s00442-005-0100-x.
  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 20(10):3177–3190. doi: 10.1111/gcb.12629.
  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J. 2001. Measuring net primary production in forests: concepts and field methods. Ecol Appl. 11(2):356–370. doi: 10.1890/1051-0761(2001)011[0356:MNPPIF.2.0.CO;2]
  • Climate-data.org. 2022. Climate: Central Kalimantan. [accessed 2022 Sept 15]. https://en.climate-data.org/asia/indonesia/central-kalimantan-1214/.
  • Curran LM, Trigg SN, McDonald AK, Astiani D, Hardiono YM, Siregar P, Caniago I, Kasischke E. 2004. Lowland forest loss in protected areas of Indonesian Borneo. Science. 303(5660):1000–1003. doi: 10.1126/science.1091714.
  • Daba DE, Soromessa T. 2019. The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance Manage. 14(1):1–13. doi: 10.1186/s13021-019-0134-8.
  • Earth Innovation Institute. 2020. Central Kalimantan, Indonesia. [accessed 2022 September 24]. https://forestchampions.org/jxd_reports/en_Central%20Kalimantan_Indonesia.pdf.
  • Ebeling J, Yasué M. 2008. Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits. Philos Trans R Soc Lond B Biol Sci. 363(1498):1917–1924. doi: 10.1098/rstb.2007.0029.
  • Ebuy J, Lokombe JP, Ponette Q, Sonwa D, Picard N. 2011. Allometric equation for predicting aboveground biomass of three tree species. J Trop Forest Sci. 23(2):125–132.
  • Enquist BJ, West GB, Charnov EL, Brown JH. 1999. Allometric scaling of production and life-history variation in vascular plants. Nature. 401(6756):907–911. doi: 10.1038/44819.
  • Fairventures Social Forestry. 2022. Planting.Climate.Action. [accessed 2022 July 5]. https://fairventures.earth.
  • Fairventures Worldwide. 2021. Forest Landscape Restoration in Central Kalimantan. [accessed 2022 July 5]. https://fairventures.org/wp-content/uploads/2021/11/FLR-Study.pdf.
  • Fayolle A, Doucet J-L, Gillet J-F, Bourland N, Lejeune P. 2013. Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecol Manage. 305:29–37. doi: 10.1016/j.foreco.2013.05.036.
  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, et al. 2012. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 9(8):3381–3403. doi: 10.5194/bg-9-3381-2012.
  • Ferraz A, Saatchi S, Xu L, Hagen S, Chave J, Yu Y, Meyer V, Garcia M, Silva C, Roswintiart O, et al. 2018. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ Res Lett. 13(9):095001. doi: 10.1088/1748-9326/aad782.
  • Fisher MR, Moeliono M, Mulyana A, Yuliani EL, Adriadi A, Kamaluddin, Judda J, Sahide MAK. 2018. Assessing the new social forestry project in Indonesia: recognition, livelihood and conservation? Int Forest Rev. 20(3):346–361. doi: 10.1505/146554818824063014.
  • Gibbs HK, Brown S, Niles JO, Foley JA. 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett. 2(4):045023. doi: 10.1088/1748-9326/2/4/045023.
  • Goodman RC, Phillips OL, Baker TR. 2014. The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl. 24(4):680–698. doi: 10.1890/13-0070.1.
  • Grassi G, House J, Dentener F, Federici S, den Elzen M, Penman J. 2017. The key role of forests in meeting climate targets requires science for credible mitigation. Nature Clim Change. 7(3):220–226. doi: 10.1038/nclimate3227.
  • Guangyi M, Yujun S, Saeed S. 2017. Models for predicting the biomass of cunninghamialanceolata trees and stands in Southeastern China. PLoS One. 12(1):e0169747. doi: 10.1371/journal.pone.0169747.
  • Guedes BS, Sitoe AA, Olsson BA. 2018. Allometric models for managing lowland miombo woodlands of the Beira corridor in Mozambique. Glob Ecol Conserv. 13:e00374. doi: 10.1016/j.gecco.2018.e00374.
  • Haase R, Haase P. 1995. Above-ground biomass estimates for invasive trees and shrubs in the Pantanal of Mato Grosso, Brazil. Forest Ecol Manage. 73(1–3):29–35. doi: 10.1016/0378-1127(94)03509-U.
  • Hansen MC, Stehman SV, Potapov PV, Arunarwati B, Stolle F, Pittman K. 2009. Quantifying changes in the rates of forest clearing in Indonesia from 1990 to 2005 using remotely sensed data sets. Environ Res Lett. 4(3):034001. doi: 10.1088/1748-9326/4/3/034001.
  • Hauk S, Skibbe K, Röhle H, Schröder J, Wittkopf S, Knoke T. 2015. Nondestructive estimation of biomass yield for short-rotation woody crops is reliable and shows high yields for commercial stands in Bavaria. Bioenerg Res. 8(3):1401–1413. doi: 10.1007/s12155-015-9602-5.
  • Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L. 2010. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecol Manage. 260(8):1375–1388. doi: 10.1016/j.foreco.2010.07.040.
  • Henry M, Bombelli A, Trotta C, Alessandrini A, Birigazzi L, Sola G, Vieilledent G, Santenoise P, Longuetaud F, Valentini R, et al. 2013. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iForest. 6(6):326–330. doi: 10.3832/ifor0901-006.
  • Hossain M, Saha C, Dhali R, Saha S, Siddique MRH, Abdullah SMR, Islam SMZ. 2021. Stem and total above-ground biomass models for the tree species of freshwater wetlands forest, coastal areas and dry areas of Bangladesh: using a non-destructive approach. Open J Forest. 11(2):73–82. doi: 10.4236/ojf.2021.112006.
  • Hossain M, Siddique MRH, Abdullah SMR, Akhter M, Islam SMZ. 2016. Field measurement protocol on tree allometric equations for estimating above-ground biomass and volume in Bangladesh. [accessed 2022 July 5]. http://bfis.bforest.gov.bd/library/field-measurement-protocol-on-tree-allometric-equations-for-estimating-above-ground-biomass-and-volume-in-bangladesh/.
  • Hossain M, Siddique MRH, Saha S, Abdullah SM. 2015. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetlands Ecol Manage. 23(4):765–774. doi: 10.1007/s11273-015-9419-1.
  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA. 2003. National-scale biomass estimators for United States tree species. Forest Sci. 49(1):12–35.
  • Johansson T. 1999. Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenergy. 16(3):223–238. doi: 10.1016/S0961-9534(98)00075-0.
  • Kachamba DJ, Eid T, Gobakken T. 2016. Above-and belowground biomass models for trees in the miombo woodlands of Malawi. Forests. 7(2):38. doi: 10.3390/f7020038.
  • Kebede B, Soromessa T. 2018. Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosyst Health Sustain. 4(1):1–12. doi: 10.1080/20964129.2018.1433951.
  • Kenzo T, Ichie T, Hattori D, Itioka T, Handa C, Ohkubo T, Kendawang JJ, Nakamura M, Sakaguchi M, Takahashi N, et al. 2009. Development of allometric relationships for accurate estimation of above-and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J Trop Ecol. 25(4):371–386. doi: 10.1017/S0266467409006129.
  • Ketterings QM, Coe R, van Noordwijk M, Ambagau’ Y, Palm CA. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecol Manage. 146(1–3):199–209. doi: 10.1016/S0378-1127(00)00460-6.
  • Köhl M, Neupane PR, Mundhenk P. 2020. REDD + measurement, reporting and verification–A cost trap? Implications for financing REDD + MRV costs by result-based payments. Ecol Econ. 168:106513. doi: 10.1016/j.ecolecon.2019.106513.
  • Komiyama A, Poungparn S, Kato S. 2005. Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol. 21(4):471–477. doi: 10.1017/S0266467405002476.
  • Krisnawati H, Adinugroho WC, Imanuddin R. 2012. Allometric models for estimating tree biomass at various forest ecosystem types in Indonesia: monograph. Climate Technology Centre and Network, Denmark.
  • Kronseder K, Ballhorn U, Böhm V, Siegert F. 2012. Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. Int J Appl Earth Obs Geoinf. 18:37–48. doi: 10.1016/j.jag.2012.01.010.
  • Lisboa SN, Guedes BS, Ribeiro N, Sitoe A. 2018. Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique. Carbon Balance Manage. 13(1):1–16. doi: 10.1186/s13021-018-0111-7.
  • Litton CM, Kauffman JB. 2008. Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica. 40(3):313–320. doi: 10.1111/j.1744-7429.2007.00383.x.
  • Magalhães TM, Cossa VN, Guedes BS, Fanheiro ASM. 2021. Species-specific biomass allometric models and expansion factors for indigenous and planted forests of the Mozambique highlands. J Forest Res. 32(3):1047–1065. doi: 10.1007/s11676-020-01156-0.
  • Magalhães TM, Seifert T. 2015. Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: measurement uncertainty. Carbon Balance Manage. 10(1):1–14. doi: 10.1186/s13021-015-0019-4.
  • Mahmood H, Siddique MRH, Abdullah SMR, Islam SMZ, Matieu H, Iqbal MZ, Akhter M. 2020a. Semi-destructive method to derive allometric aboveground biomass model for village forest of Bangladesh: comparison of regional and pantropical models. J Trop Forest Sci. 32(3):246–256. doi: 10.26525/jtfs2020.32.3.246.
  • Mahmood H, Siddique MRH, Akhter M. 2016. A critical review and database of biomass and volume allometric equation for trees and shrubs of Bangladesh. IOP Conf Ser: Earth Environ Sci. 39:012057. doi: 10.1088/1755-1315/39/1/012057.
  • Mahmood H, Siddique MRH, Islam SM, Abdullah SM, Matieu H, Iqbal M, Akhter M. 2020b. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. J Forest Res. 31(4):1235–1245. doi: 10.1007/s11676-019-00881-5.
  • Makundi RW. 2014. Perspectives de REDD + dans les plantations forestières africaines. Working Paper Series, African Forest Forum, Vol. 2, p. 28.
  • Malimbwi RE, Solberg B, Luoga E. 1994. Estimation of biomass and volume in miombo woodland at Kitulangalo Forest Reserve, Tanzania. J Trop Forest Sci. 7(2):230–242.
  • Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M. 2005. Scaling and power-laws in ecological systems. J Exp Biol. 208(Pt 9):1749–1769. doi: 10.1242/jeb.01588.
  • Mate R, Johansson T, Sitoe A. 2014. Biomass equations for tropical forest tree species in Mozambique. Forests. 5(3):535–556. doi: 10.3390/f5030535.
  • Mayer DG, Butler DG. 1993. Statistical validation. Ecol Model. 68(1–2):21–32. doi: 10.1016/0304-3800(93)90105-2.
  • Ministry of Environment and Forestry. 2020. The State of Indonesia’s Forests 2020. [accessed 2022 September 24]. https://indonesianembassy.de/wp-content/uploads/2020/12/FA-Rev-01-Booklet-EXECUTIVE-SUMMARY-SOFO-2020-A5_ENG-12.24.20_compressed-1.pdf.
  • Moeliono M, Limberg G. 2012. The decentralization of forest governance: politics, economics and the fight for control of forests in Indonesian Borneo. London, UK: Routledge.
  • Monika V, Daniel Z, Tomáš Vít ČŠ. 2015. Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic. J Forest Sci. 61(2):45–54.
  • Mugasha WA, Eid T, Bollandsås OM, Malimbwi RE, Chamshama SAO, Zahabu E, Katani JZ. 2013. Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecol Manage. 310:87–101. doi: 10.1016/j.foreco.2013.08.003.
  • Mugasha WA, Mwakalukwa EE, Luoga E, Malimbwi RE, Zahabu E, Silayo DS, Sola G, Crete P, Henry M, Kashindye A. 2016. Allometric models for estimating tree volume and aboveground biomass in lowland forests of Tanzania. Int J Forest Res. 2016:1–13. doi: 10.1155/2016/8076271.
  • Mukuralinda A, Kuyah S, Ruzibiza M, Ndoli A, Nabahungu NL, Muthuri C. 2021. Allometric equations, wood density and partitioning of aboveground biomass in the arboretum of Ruhande, Rwanda. Trees, Forests People. 3:100050. doi: 10.1016/j.tfp.2020.100050.
  • Muller‐Landau HC. 2004. Interspecific and inter‐site variation in wood specific gravity of tropical trees. Biotropica. 36(1):20–32. doi: 10.1111/j.1744-7429.2004.tb00292.x.
  • Mwakalukwa EE, Meilby H, Treue T. 2014. Volume and aboveground biomass models for dry miombo woodland in Tanzania. Int J for Res. 2014:1–11. doi: 10.1155/2014/531256.
  • Nath PK, Behera B. 2011. A critical review of impact of and adaptation to climate change in developed and developing economies. Environ Dev Sustain. 13(1):141–162. doi: 10.1007/s10668-010-9253-9.
  • Nawir AA, Murniati RL, Hiyama C, Gumartini T. 2007. Portraits of rehabilitation projects in Indonesia: impacts and lesson learnt. In: Nawir AA, Murniati RL, Rumboko L, editors. Forest Rehabilitation in Indonesia: where to after more than three decades. Bogor, Indonesia: CIFOR; p. 113–175.
  • Nelson BW, Mesquita R, Pereira JLG, De Souza SGA, Batista GT, Couto LB. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecol Manage. 117(1–3):149–167. doi: 10.1016/S0378-1127(98)00475-7.
  • Ngomanda A, Engone Obiang NL, Lebamba J, Moundounga Mavouroulou Q, Gomat H, Mankou GS, Loumeto J, Midoko Iponga D, Kossi Ditsouga F, Zinga Koumba R, et al. 2014. Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? Forest Ecol Manage. 312:1–9. doi: 10.1016/j.foreco.2013.10.029.
  • Niklas KJ. 2006. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171(1):27–40. doi: 10.1111/j.1469-8137.2006.01760.x.
  • Nogueira EM, Fearnside PM, Nelson BW, Barbosa RI, Keizer EWH. 2008. Estimates of forest biomass in the Brazilian Amazon: new allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecol Manage. 256(11):1853–1867. doi: 10.1016/j.foreco.2008.07.022.
  • Oluwajuwon TV. 2022. Form factors and volume models for Paraserianthes Falcataria (Sengon) in smallholder plantation forests of Central Kalimantan, Indonesia [MSc dissertation]. Dresden, Germany: Technische Universität Dresden.
  • Osaka S, Bellamy R, Castree N. 2021. Framing “nature‐based” solutions to climate change. Wiley Interdiscip Rev Clim Change. 12(5):e729. doi: 10.1002/wcc.729.
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.
  • Pachauri RK, Reisinger A. 2007. Climate Change 2007: synthesis report. Cambridge, UK: Intergovernmental Panel on Climate Change.
  • Packard GC. 2014. Multiplicative by nature: logarithmic transformation in allometry. J Exp Zool B Mol Dev Evol. 322(4):202–207. doi: 10.1002/jez.b.22570.
  • Packard GC, Birchard GF, Boardman TJ. 2011. Fitting statistical models in bivariate allometry. Biol Rev Camb Philos Soc. 86(3):549–563. doi: 10.1111/j.1469-185X.2010.00160.x.
  • Page S, Hosciło A, Wösten H, Jauhiainen J, Silvius M, Rieley J, Ritzema H, Tansey K, Graham L, Vasander H, et al. 2009. Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems. 12(6):888–905. doi: 10.1007/s10021-008-9216-2.
  • Pajtík J, Konôpka B, Lukac M. 2011. Individual biomass factors for beech, oak and pine in Slovakia: a comparative study in young naturally regenerated stands. Trees. 25(2):277–288. doi: 10.1007/s00468-010-0504-z.
  • Pearson T, Walker S, Brown S. 2005. Sourcebook for land-use, land-use change and forestry projects. Arlington (TX): Winrock International and the Bio-carbon fund of the World Bank.
  • Pearson T, Walker S, Brown S. 2013. Sourcebook for land use, land-use change and forestry projects. Arlington (TX): Winrock International and the Bio-carbon fund of the World Bank.
  • Pender J, Suyanto JK, Kato E. 2008. Impacts of the Hutan Kamasyarakatan social forestry program in the Sumberjaya watershed, West Lampung district of Sumatra, Indonesia. IFPRI Discussion Paper. Int Food Policy Res Inst.
  • Peng C. 2000. Understanding the role of forest simulation models in sustainable forest management. Environ Impact Assess Rev. 20(4):481–501. doi: 10.1016/S0195-9255(99)00044-X.
  • Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K. 2003, editors. Good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme, IGES.
  • Pilli R, Anfodillo T, Carrer M. 2006. Towards a functional and simplified allometry for estimating forest biomass. Forest Ecol Manage. 237(1–3):583–593. doi: 10.1016/j.foreco.2006.10.004.
  • Porte A, Trichet P, Bert D, Loustau D. 2002. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Aıt.). Forest Ecol Manage. 158(1–3):71–83. doi: 10.1016/S0378-1127(00)00673-3.
  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Ravindranath NH, Ostwald M. 2007. Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. Heidelberg, Germany: Springer Science and Business Media.
  • Rusolono T. 2006. Model Pendugaan Persediaan Karbon Tegakan Agroforestri untuk Pengelolaan Hutan Milik Melalui Skema Perdagangan Karbon [Disertasi]. Bogor (ID): Institut Pertanian Bogor, Indonesia.
  • Rutishauser E, Noor’an F, Laumonier Y, Halperin J, Rufi’ie Hergoualc’h K, Verchot L. 2013. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecol Manage. 307:219–225. doi: 10.1016/j.foreco.2013.07.013.
  • Saha C, Mahmood H, Nayan SNS, Siddique MRH, Abdullah SMR, Islam SMZ, Iqbal MZ, Akhter M. 2021. Allometric biomass models for the most abundant fruit tree species of Bangladesh: a non-destructive approach. Environ Challenges. 3:100047. doi: 10.1016/j.envc.2021.100047.
  • Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y. 2005. Age-related equations for above-and below-ground biomass of a Eucalyptus hybrid in Congo. Forest Ecol Manage. 205(1–3):199–214. doi: 10.1016/j.foreco.2004.10.006.
  • Sandker M, Suwarno A, Campbell BM. 2007. Will forests remain in the face of oil palm expansion? Simulating change in Malinau, Indonesia. Ecol Society. 12(2):37. doi: 10.5751/ES-02292-120237.
  • Sanquetta CR, Dalla Corte AP, Behling A, de Oliveira Piva LR, Péllico Netto S, Rodrigues AL, Sanquetta MNI. 2018. Selection criteria for linear regression models to estimate individual tree biomasses in the Atlantic Rain Forest, Brazil. Carbon Balance Manage. 13(1):1–15. doi: 10.1186/s13021-018-0112-6.
  • Segura M, Kanninen M. 2005. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica 1. Biotropica. 37(1):2–8. doi: 10.1111/j.1744-7429.2005.02027.x.
  • Sileshi GW. 2014. A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecol Manage. 329:237–254. doi: 10.1016/j.foreco.2014.06.026.
  • Siregar CA. 2007. Formulasi Allometri Biomasa Dan Konservasi Karbon Tanah Hutan Tanaman Sengon (Paraserianthes Falcataria (L.) Nielsen) Di Kediri. Jurpenhutkonsevasialam. 4(2):139–149. doi: 10.20886/jphka.2007.4.2.139-149.
  • Siswanto BE. 2008. Model pendugaan volume pohon sengon (Paraserianthes falcataria) di Kesatuan Pemangkuan Hutan Kediri, Jawa Timur. J Penelit Hutan Tanam. 5(2):301–305.
  • Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P. 2007. Indirect methods of large-scale forest biomass estimation. Eur J Forest Res. 126(2):197–207. doi: 10.1007/s10342-006-0125-7.
  • Stefanakis AI, Calheiros CSC, Nikolaou I. 2021. Nature-based solutions as a tool in the new circular economic model for climate change adaptation. CircEconSust. 1(1):303–318. doi: 10.1007/s43615-021-00022-3.
  • Suwarno A, Hein L, Sumarga E. 2015. Governance, decentralisation and deforestation: the case of central Kalimantan Province, Indonesia. Q J Int Agric. 54(892-2016–65240):77–100.
  • Taskinen S, Warton DI. 2013. Robust tests for one or more allometric lines. J Theor Biol. 333:38–46. doi: 10.1016/j.jtbi.2013.05.010.
  • Temesgen H, Affleck D, Poudel K, Gray A, Sessions J. 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J Forest Res. 30(4):1–10. doi: 10.1080/02827581.2015.1012114.
  • Traoré S, Djomo AN, N’guessan AK, Coulibaly B, Ahoba A, Gnahoua GM, N’guessan ÉK, Yao CYA, N’Dja JK, Guédé NZ. 2018. Stand structure, allometric equations, biomass and carbon sequestration capacity of Acacia mangium Wild. (Mimosaceae) in Cote d’Ivoire. Open J Forest. 8(1):42–60. doi: 10.4236/ojf.2018.81004.
  • Tumwebaze SB, Bevilacqua E, Briggs R, Volk T. 2013. Allometric biomass equations for tree species used in agroforestry systems in Uganda. Agroforest Syst. 87(4):781–795. doi: 10.1007/s10457-013-9596-y.
  • Vahedi AA, Mataji A, Babayi-Kafaki S, Eshaghi-Rad J, Hodjati SM, Djomo A. 2014. Allometric equations for predicting aboveground biomass of beech-hornbeam stands in the Hyrcanian forests of Iran. J Forest Sci. 60(6):236–247.
  • Varis E. 2011. Stand growth and management scenarios for Paraserianthes falcataria smallholder plantations in Indonesia [master’s thesis]. Finland: University of Helsinki.
  • Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M. 2012. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl. 22(2):572–583. doi: 10.1890/11-0039.1.
  • Van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT. 2009. CO2 emissions from forest loss. Nature Geosci. 2(11):737–738. doi: 10.1038/ngeo671.
  • West GB, Brown JH, Enquist BJ. 1999. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science. 284(5420):1677–1679. doi: 10.1126/science.284.5420.1677.
  • Westman WE, Rogers RW. 1977. Biomass and structure of a subtropical eucalypt forest, North Stradbroke Island. Aust J Bot. 25(2):171–191. doi: 10.1071/BT9770171.
  • Williams RJ, Zerihun A, Montagu KD, Hoffman M, Hutley LB, Chen X, Williams RJ, Zerihun A, Montagu KD, Hoffman M. 2005. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations. Aust J Bot. 53(7):607–619. doi: 10.1071/BT04149.
  • Xiao X, White EP, Hooten MB, Durham SL. 2011. On the use of log‐transformation vs. nonlinear regression for analyzing biological power laws. Ecology. 92(10):1887–1894. doi: 10.1890/11-0538.1.
  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4(4):63.