512
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparison of organic carbon properties in extracted soil solutions obtained underneath Cryptomeria japonica and Quercus acutissima and its implication on stream dissolved organic carbon

, , , , &
Pages 296-308 | Received 01 Jul 2023, Accepted 27 Sep 2023, Published online: 11 Oct 2023

References

  • Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M. 2015. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model. Soil Biol Biochem. 88:390–402. doi: 10.1016/j.soilbio.2015.06.008.
  • Barnes RT, Butman DE, Wilson HF, Raymond PA. 2018. Riverine export of aged carbon driven by flow path depth and residence time. Environ Sci Technol. 52(3):1028–1035. doi: 10.1021/acs.est.7b04717.
  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N. 2011. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. In D. L. Sparks, editor. Advances in agronomy. Vol. 110. San Diego: Elsevier Academic Press Inc, p. 1–75.
  • Borken W, Ahrens B, Schulz C, Zimmermann L. 2011. Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils. Global Change Biology. 17(7):2428–2443. doi: 10.1111/j.1365-2486.2011.02390.x.
  • Camino-Serrano M, Gielen B, Luyssaert S, Ciais P, Vicca S, Guenet B, Vos BD, Cools N, Ahrens B, Altaf Arain M, et al. 2014. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochem Cycles. 28(5):497–509. doi: 10.1002/2013GB004726.
  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR. 1997. Global vegetation change through the miocene/pliocene boundary. Nature. 389(6647):153–158. doi: 10.1038/38229.
  • Cha JY, Cha Y, Oh NH. 2019. The effects of tree species on soil organic carbon content in South Korea. JGR Biogeosciences. 124(3):708–716. doi: 10.1029/2018JG004808.
  • Chantigny MH, Harrison-Kirk T, Curtin D, Beare M. 2014. Temperature and duration of extraction affect the biochemical composition of soil water-extractable organic matter. Soil Biology and Biochemistry. 75:161–166. doi: 10.1016/j.soilbio.2014.04.011.
  • Choi H. 2001. Developing a rainfall-runoff model for forest watersheds using distributed hydrological concept of TOPMODEL. Ph.D. dissertation. South Korea: Seoul National University. p. 1–199.
  • Cory RM, Harrold KH, Neilson BT, Kling GW. 2015. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation. Biogeosciences. 12(22):6669–6685. doi: 10.5194/bg-12-6669-2015.
  • Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH. 1996. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry. 35(3):471–505. doi: 10.1007/BF02183037.
  • Delle Site A. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data. 30(1):187–439. doi: 10.1063/1.1347984.
  • Denis M, Jeanneau L, Petitjean P, Murzeau A, Liotaud M, Yonnet L, Gruau G. 2017. New molecular evidence for surface and sub-surface soil erosion controls on the composition of stream DOM during storm events. Biogeosciences. 14(22):5039–5051. doi: 10.5194/bg-14-5039-2017.
  • Diochon AC, Kellman L. 2009. Physical fractionation of soil organic matter: destabilization of deep soil carbon following harvesting of a temperate coniferous forest. J Geophys Res. 114(G1):G01016. doi: 10.1029/2008JG000844.
  • Druffel ER, Williams PM, Bauer JE, Ertel JR. 1992. Cycling of dissolved and particulate organic matter in the open ocean. J Geophys Res. 97(C10):15639–15659. doi: 10.1029/92JC01511.
  • Dutta K, Schuur EAG, Neff JC, Zimov SA. 2006. Potential carbon release from permafrost soils of Northeastern Siberia. Glob Change Biol. 12(12):2336–2351. doi: 10.1111/j.1365-2486.2006.01259.x.
  • Fröberg M, Hanson PJ, Trumbore SE, Swanston CW, Todd DE. 2009. Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm. Geoderma. 149(3-4):181–188. doi: 10.1016/j.geoderma.2008.11.029.
  • Fröberg M, Jardine PM, Hanson PJ, Swanston CW, Todd DE, Tarver JR, Garten CT. 2007. Low dissolved organic carbon input from fresh litter to deep mineral soils. Soil Sci Soc Am J. 71(2):347–354. doi: 10.2136/sssaj2006.0188.
  • Fröberg M, Hansson K, Kleja DB, Alavi G. 2011. Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden. For Ecol Manag. 262(9):1742–1747. doi: 10.1016/j.foreco.2011.07.033.
  • Guggenberger G, Zech W, Schulten H-R. 1994. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Org Geochem. 21(1):51–66. doi: 10.1016/0146-6380(94)90087-6.
  • Guigue J, Mathieu O, Lévêque J, Mounier S, Laffont R, Maron PA, Navarro N, Chateau C, Amiotte-Suchet P, Lucas Y. 2014. A comparison of extraction procedures for water-extractable organic matter in soils. Eur J Soil Sci. 65(4):520–530. doi: 10.1111/ejss.12156.
  • Hagedorn F, Saurer M, Blaser P. 2004. A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci. 55(1):91–100. doi: 10.1046/j.1365-2389.2003.00578.x.
  • Hensgens G, Laudon H, Johnson MS, Berggren M. 2021. The undetected loss of aged carbon from boreal mineral soils. Sci Rep. 11(1):6202. doi: 10.1038/s41598-021-85506-w.
  • Hernes PJ, Spencer RGM, Dyda RY, O'Geen AT, Dahlgren RA. 2017. The genesis and exodus of vascular plant DOM from an Oak Woodland landscape. Front Earth Sci. 5:9. doi: 10.3389/feart.2017.00009.
  • Hood E, Gooseff MN, Johnson SL. 2006. Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. J Geophys Res. 111(G1):G01007. doi: 10.1029/2005JG000082.
  • Im SJ, Lee SH, Lee HG, Ahn SJ. 2007. Prediction of runoff on a small forest watershed using BROOK90 model. Korean J Limnol. 40:155–162.
  • Jones D, Willett V. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem. 38(5):991–999. doi: 10.1016/j.soilbio.2005.08.012.
  • Jeong J-J, Bartsch S, Fleckenstein JH, Matzner E, Tenhunen JD, Lee SD, Park SK, Park J-H. 2012. Differential storm responses of dissolved and particulate organic carbon in a mountainous headwater stream, investigated by high-frequency, in situ optical measurements. J Geophys Res. 117(G3):3013. doi: 10.1029/2012JG001999.
  • Kaiser K, Guggenberger G, Zech W. 2001. Isotopic fractionation of dissolved organic carbon in shallow forest soils as affected by sorption. Eur J Soil Sci. 52(4):585–597. doi: 10.1046/j.1365-2389.2001.00407.x.
  • Kaiser K, Kalbitz K. 2012. Cycling downwards – dissolved organic matter in soils. Soil Biol Biochem. 52:29–32. doi: 10.1016/j.soilbio.2012.04.002.
  • Kalbitz K, Angers D, Kaiser K, Chantigny M. 2007. Extraction and characterization of dissolved organic matter. In: Carter MR, Gregorich EG, editors. Soil sampling and methods of analysis. 2nd ed. Boca Raton: CRC Press.
  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165(4):277–304. doi: 10.1097/00010694-200004000-00001.
  • Karltun E, Harrison A, Alriksson A, Bryant C, Garnett M, Olsson M. 2005. Old organic carbon in soil solution DOC after afforestation – Evidence from 14C analysis. Geoderma. 127(3–4):188–195. doi: 10.1016/j.geoderma.2004.12.008.
  • Kim C, Baek G, Choi B, Ha J, Bae Eun J, Lee K-S, Son Yeong M. 2020. Carbon stocks of tree, forest floor, and mineral soil in Cryptomeria japonica and Chamaecyparis obtusa stands. J Korean Soc Forest Sci. 109:169–178. in Korean with English abstract)
  • Kohn MJ. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA. 107(46):19691–19695. doi: 10.1073/pnas.1004933107.
  • Komada T, Anderson MR, Dorfmeier CL. 2008. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid. Limnol Oceanogr Methods. 6(6):254–262. doi: 10.4319/lom.2008.6.254.
  • Lambert T, Pierson-Wickmann A-C, Gruau G, Jaffrezic A, Petitjean P, Thibault J-N, Jeanneau L. 2013. Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment. Water Resour Res. 49(9):5792–5803. doi: 10.1002/wrcr.20466.
  • Lee E-J, Shin Y, Yoo G-Y, Ko E-B, Butman D, Raymond PA, Oh N-H. 2021. Loads and ages of carbon from the five largest rivers in South Korea under Asian monsoon climates. J Hydrol. 599:126363. doi: 10.1016/j.jhydrol.2021.126363.
  • Lee S-W, Won H-K, Shin M-Y, Son Y-M, Lee Y-Y. 2007. Estimation of forest productive area of Quercus acutissima and Quercus mongolica using site environmental variables. KJSSF. 40:429–434.
  • Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature. 528(7580):60–68. doi: 10.1038/nature16069.
  • Longworth BE, Petsch ST, Raymond PA, Bauer JE. 2007. Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system. Geochimica et Cosmochimica Acta. 71(17):4233–4250. doi: 10.1016/j.gca.2007.06.056.
  • Lorenz M, Derrien D, Zeller B, Udelhoven T, Werner W, Thiele-Bruhn S. 2020. The linkage of 13C and 15N soil depth gradients with C: n and O: c stoichiometry reveals tree species effects on organic matter turnover in soil. Biogeochemistry. 151(2–3):203–220. doi: 10.1007/s10533-020-00721-3.
  • Lu Y, Bauer J, Canuel E, Chambers RM, Yamashita Y, Jaffé R, Barrett A. 2014. Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry. 119(1–3):275–292. doi: 10.1007/s10533-014-9965-2.
  • Lundstrom US, van Breemen N, Bain D. 2000. The podzolization process. A review. Geoderma. 94(2–4):91–107. doi: 10.1016/S0016-7061(99)00036-1.
  • Magee BR, Lion LW, Lemley AT. 1991. Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous-media. Environ Sci Technol. 25(2):323–331. doi: 10.1021/es00014a017.
  • Marwick TR, Tamooh F, Teodoru CR, Borges AV, Darchambeau F, Bouillon S. 2015. The age of river-transported carbon: a global perspective. Global Biogeochem Cycles. 29(2):122–137. doi: 10.1002/2014GB004911.
  • Michalzik B, Tipping E, Mulder J, Lancho JFG, Matzner E, Bryant CL, Clarke N, Lofts S, Esteban MAV. 2003. Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry. 66(3):241–264. doi: 10.1023/B:BIOG.0000005329.68861.27.
  • Nakanishi T, Atarashi-Andoh M, Koarashi J, Saito-Kokubu Y, Hirai K. 2012. Carbon isotopes of water-extractable organic carbon in a depth profile of forest soil imply a dynamic relationship with soil carbon. Eur J Soil Sci. 63(4):495–500. doi: 10.1111/j.1365-2389.2012.01465.x.
  • Nakanishi T, Atarashi-Andoh M, Koarashi J, Saito-Kokubu Y, Hirai K. 2014. Seasonal and snowmelt-driven changes in the water-extractable organic carbon dynamics in a cool-temperate Japanese forest soil, estimated using the bomb-14C tracer. J Environ Radioact. 128:27–32. doi: 10.1016/j.jenvrad.2013.10.028.
  • Nguyen TT, Marschner P. 2016. Sorption of water-extractable organic carbon in various clay subsoils: effects of soil properties. Pedosphere. 26(1):55–61. doi: 10.1016/S1002-0160(15)60022-4.
  • Oh N-H, Pellerin BA, Bachand PAM, Hernes PJ, Bachand SM, Ohara N, Kavvas ML, Bergamaschi BA, Horwath WR. 2013. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed. Agric Ecosyst Environ. 179:1–10. doi: 10.1016/j.agee.2013.07.004.
  • Park JH, Woo BY, Kim OR, Ahn HC, Kim JS. 2000. The effects of timber harvesting on soil chemical ingredients and stream water quality. J Ecol Environ. 23:9–15.
  • Paul A, Balesdent J, Hatté C. 2020. 13C-14C relations reveal that soil 13C-depth gradient is linked to historical changes in vegetation 13C. Plant Soil. 447(1–2):305–317. doi: 10.1007/s11104-019-04384-4.
  • R Core Team. 2019. R: A language and environment for statistical computing. (v.3.6.0) [Computer software]. R Foundation for Statistical Computing.
  • Raymond PA, Bauer JE. 2001a. DOC cycling in a temperate estuary: a mass balance approach using natural 14C and 13C isotopes. Limnol Oceanogr. 46(3):655–667. doi: 10.4319/lo.2001.46.3.0655.
  • Raymond PA, Bauer JE. 2001b. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem. 32(4):469–485. doi: 10.1016/S0146-6380(00)00190-X.
  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, et al. 2013. Global carbon dioxide emissions from inland waters. Nature. 503(7476):355–359. doi: 10.1038/nature12760.
  • Raymond PA, Saiers JE, Sobczak WV. 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology. 97(1):5–16. doi: 10.1890/14-1684.1.
  • Rumpel C, Eusterhues K, Kögel-Knabner I. 2004. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol Biochem. 36(1):177–190. doi: 10.1016/j.soilbio.2003.09.005.
  • Rumpel C, Kögel-Knabner I, Bruhn F. 2002. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem. 33(10):1131–1142. doi: 10.1016/S0146-6380(02)00088-8.
  • Sanderman J, Baldock JA, Amundson R. 2008. Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils. Biogeochemistry. 89(2):181–198. doi: 10.1007/s10533-008-9211-x.
  • Shi Z, Allison SD, He Y, Levine PA, Hoyt AM, Beem-Miller J, Zhu Q, Wieder WR, Trumbore S, Randerson JT. 2020. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat Geosci. 13(8):555–559. doi: 10.1038/s41561-020-0596-z.
  • Schiff SL, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ. 1997. Export of DOC from forested catchments on the precambrian shield of central ontario: clues from 13C and 14C. Biogeochemistry. 36(1):43–65. doi: 10.1023/A:1005744131385.
  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature. 478(7367):49–56. doi: 10.1038/nature10386.
  • Tegen I, Dörr H. 1996. measurements of soil organic matter, soil CO2 and dissolved organic carbon (1987–1992). Radiocarbon. 38(2):247–251. doi: 10.1017/S0033822200017628.
  • Thieme L, Graeber D, Hofmann D, Bischoff S, Schwarz M, Steffen B, Meyer U-N, Kaupenjohann M, Wilcke W, Michalzik B, et al. 2019. Dissolved organic matter characteristics of deciduous and coniferous forests with variable management: different at the source, aligned in the soil. Biogeosciences. 16(7):1411–1432. doi: 10.5194/bg-16-1411-2019.
  • Trumbore S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl. 10(2):399–411. doi: 10.1890/1051-0761(2000)010[0399:AOSOMA.2.0.CO;2]
  • Trumbore S. 2009. Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci. 37(1):47–66. doi: 10.1146/annurev.earth.36.031207.124300.
  • Trumbore SE, Schiff SL, Aravena R, Elgood R. 1992. Sources and transformation of dissolved organic carbon in the Harp Lake forested catchment: the role of soils. Radiocarbon. 34(3):626–635. doi: 10.1017/S0033822200063918.
  • van der Voort TS, Mannu U, Hagedorn F, McIntyre C, Walthert L, Schleppi P, Haghipour N, Eglinton TI. 2019. Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient. Biogeosciences. 16(16):3233–3246. doi: 10.5194/bg-16-3233-2019.
  • Werth M, Kuzyakov Y. 2010. 13C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies. Soil Biol Biochem. 42(9):1372–1384. doi: 10.1016/j.soilbio.2010.04.009.
  • Wynn JG, Harden JW, Fries TL. 2006. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma. 131(1-2):89–109. doi: 10.1016/j.geoderma.2005.03.005.
  • Yang L, Chang S-W, Shin H-S, Hur J. 2015. Tracking the evolution of stream DOM source during storm events using end member mixing analysis based on DOM quality. J Hydrol. 523:333–341. doi: 10.1016/j.jhydrol.2015.01.074.