642
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of Improved Planting Stock on Tree Growth, Wood Properties, and Soil Fertility of Teak Plantations 10 Years After Planting

, , , , , , , , & show all
Pages 8-15 | Received 12 Dec 2022, Accepted 25 Oct 2023, Published online: 05 Nov 2023

References

  • Abod AS, Siddiqui TM. 2002. Growth Response of Teak (Tectona grandis L.f.) Seedlings to Nitrogen, Phosphorus and Potassium Fertilizers. PertanikaJ. Trap. Agric. Sci 25(2): 107–113.
  • Adekunle VAJ, Alo AA, Adekayode FO. 2011. Yields and nutrient pools in soils cultivated with Tectona grandis and Gmelina arborea in Nigerian rainforest ecosystem. Journal of the Saudi Society of Agricultural Sciences 10(2): 127–135. doi: 10.1016/j.jssas.2011.05.001.
  • Al-Mahmud AM, Rahman MM, Hossain MK. 2018. The effects of teak monoculture on forest soils: a case study in Bangladesh. Journal of Forestry Research. 29(4): 1111–1120. doi: 10.1007/s11676-017-0515-3.
  • Bhat KM, Priya PB, Rugmini P. 2001. Characterisation of juvenile wood in teak. Wood Science and Technology. 34: 517–532. doi: 10.1007/s002260000067.
  • Cavalcante VS, dos Santos ML, Cotta LC, Neves JCL, Soares EMB. 2021. Clonal teak litter in tropical soil: Decomposition, nutrient cycling, and biochemical composition. Revista Brasileira de Ciencia do Solo. 45: e0200071. doi: 10.36783/18069657rbcs20200071.
  • Cown DJ. 1978. Comparison of the pilodyn and torsiometer methods for the rapid assessment of wood density in living trees. New Zealand Journal Forest Science. 8(3):384–391.
  • Eviati, Sulaeman. 2005. Analysis of Soil Chemistry, Plant Tissue, Water and Fertilizer. Bogor: Indonesia Soil Research Institute. 2:53–58.
  • Fernández-Moya J, Alvarado A, Mata R, Thiele H, Segura JM, Vaides E, San Miguel-Ayanz A, Marchamalo-Sacristán M. 2015. Soil fertility characterisation of teak (Tectona grandis L.f.) plantations in Central America. Soil Research. 53(4): 423–432. doi: 10.1071/SR14256.
  • Giweta M. 2020. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment. 44(1): 11. doi: 10.1186/s41610-020-0151-2.
  • Hardiwinoto S, Ardiansyah F, Widiyatno  . 2021. Application of selected teak clone and organic fertilizer to accelerate rehabilitation of lowland forest in Java, Indonesia. Biodiversitas 22(4): 1750–1756. doi: 10.13057/biodiv/d220419.
  • Hidayati F, Fajrin IT, Ridho MR, Nugroho WD, Marsoem SN, Na’iem M. 2016. Physical and Mechanical Properties of Superior “Mega” and Conventional Teak Wood Planted in Wanagama Educational Forest, Gunungkidul, Yogyakarta. Jurnal Ilmu Kehutanan. 10(2): 98–107. doi: 10.22146/jik.16510.
  • Hidayati F, Ishiguri F, Iizuka K, Makino K, Takashima Y, Danarto S, Winarni WW, Irawati D, Na’iem M, Yokota S. 2013. Variation in tree growth characteristics, stress-wave velocity, and Pilodyn penetration of 24-year-old teak (Tectona grandis) trees originating in 21 seed provenances planted in Indonesia. Journal of Wood Science, 59(6): 512–516. doi: 10.1007/s10086-013-1368-9.
  • Hidayati F, Ishiguri F, Iizuka K, Makino K, Tanabe J, Marsoem SN, Na’iem M, Yokota S, Yoshizawa N. 2013. Growth characteristics, stress-wave velocity, and Pilodyn penetration of 15 clones of 12-year-old Tectona grandis trees planted at two different sites in Indonesia. Journal of Wood Science 59(3): 249–254. doi: 10.1007/s10086-012-1320-4.
  • Hidayati F, Sulistyo J, Lukmandaru G, Listyanto T, Praptoyo H, Pujiarti R. 2015. Physical and Mechanical Properties of 10-Year Old Superior and Conventional Teak Planted in Randublatung Central Java Indonesia. Journal of Tropical Wood Science and Technology. 13(1): 11–21. http://www.ejournalmapeki.org/index.php/JITKT/article/view/55/53,
  • IBM Corp. 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
  • Ishiguri F, Matsui R, Iizuka K, Yokota S, Yoshizawa N. 2008. Prediction of the mechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees. Holz Roh Werkst. 66(4): 275–280. doi: 10.1007/s00107-008-0251-7.
  • Ishiguri F, Wahyudi I, Takeuchi M, Takashima Y, Iizuka K, Yokota S, Yoshizawa N. 2011. Wood properties of Pericopsis mooniana grown in a plantation in Indonesia. Journal of Wood Science 57(3): 241–246. doi: 10.1007/s10086-010-1163-9.
  • Jha KK. 2010. Litter production and leaf litter decomposition dynamics in an age series Tectona grandis plantations of Moist Tarai Sal Forests. Indian Forester. 136(4), 437–450. https://www.researchgate.net/publication/284187252
  • Kaosa-ard, A. 1989. Its Natural Distribution and Related Factors. NAT. HIST. BULL. SIAM SOC. 29: 55–74.
  • Kayama M, Noda I, Nimpila S, Hongthong S, Yoneda R, Himmapan,W. 2021. Effect of bentonite on the early growth characteristics of teak seedlings planted in sandy soil in Northeast Thailand: A pilot study. Forests. 12(1): 1–20. doi: 10.3390/f12010026.
  • Kollert W, Kleine M. 2017. Introduction. In: Kollert W, Kleine M, editors. The Global Teak Study Analysis, Evaluation and Future Potential of Teak Resources. Vienna: IUFRO World Series. 36:15–18.
  • Kollert W, Walotek PJ. 2015. Global teak trade in the aftermath of Myanmar’s log export ban. Rome: Food And Agriculture Organization ff The United Nations (FAO). p. 1–20. https://www.fao.org/3/i5023e/i5023e.pdf
  • Kumar ANA, Srinivasa YB; Chauhan SS. 2022. Growth rate convergence in teak (Tectona grandis L.). Current Science. 83(7): 808–809.
  • Kyaw TY, Germain RH, Stehman SV, Quackenbush LJ. 2020. Quantifying forest loss and forest degradation in Myanmar’s “Home of Teak”. Canadian Journal of Forest Research. 50(2): 89–101. doi: 10.1139/cjfr-2018-0508.
  • Li B, Olmstead RG. 2017. Two new subfamilies in lamiaceae. Phytotaxa. 313(2): 222–226. doi: 10.11646/phytotaxa.313.2.9.
  • Li B, Cantino PD, Olmstead RG, Bramley GLC, Xiang CL, Ma ZH, Tan YH, Zhang DX. 2016. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Scientific Reports. 6: 34343. doi: 10.1038/srep34343.
  • Lukmandaru G, Takahashi K. 2008. Variation in the natural termite resistance of teak (Tectona grandis Linn. fil.) wood as a function of tree age. Annals of Forest Science. 65: 708. doi: 10.1051/forest:2008047.
  • Mathew J, Vasudeva R. 2003. Clonal variation for seed germination in teak (Tectona grandis Linn. F). Current Science 84(8): 1133–1136. https://www.currentscience.ac.in/Volumes/84/08/1133.pdf
  • Midgley S, Somaiya RT, Stevens PR, Brown A, Nguyen Duc Kien  , Laity R. 2015. Planted teak: global production and markets, with reference to Solomon Islands. Canberra: Australian Centre for International Agricultural Research (ACIAR). Technical Reports No. 85. Available from https://www.aciar.gov.au/sites/default/files/legacy/tr85-web.pdf.
  • Miranda I, Sousa V, Pereira H. 2011. Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. Journal of Wood Science. 57(3): 171–178. doi: 10.1007/s10086-010-1164-8.
  • Mon MS, Mizoue N, Htun NZ, Kajisa T, Yoshida S. 2012. Factors affecting deforestation and forest degradation in selectively logged production forest: A case study in Myanmar. Forest Ecology and Management. 267: 190–198. doi: 10.1016/j.foreco.2011.11.036.
  • Moya R, Calvo-Alvarado J. 2012. Variation of wood color parameters of Tectona grandis and its relationship with physical environmental factors. Annals of Forest Science. 69: 947–959. doi: 10.1007/s13595-012-0217-0.
  • Moya R, Tenorio C. 2021. Wood Properties and Their Variations in Teak. In: Ramasamy Y, Galeano E, Win TT, editors. The Teak Genome. Compendium of Plant Genomes. Springer, Cham. P. 103–137. doi: 10.1007/978-3-030-79311-1_8.
  • Naiem M. 2001. Early performance of Clonal test of teak. In: Hardiyanto EB, editor. Potential and opportunities in marketing and trade of plantation teak: challenge for the new millenium”. Proceeding of the Third Regional Seminar on Teak, July 31 – August 4, 2000, Yogyakarta: Faculty of Forestry- Gadjah Mada University, Perum Perhutani and TEAKNET-Asia Pacific Region. P. 271–275.
  • Naiem M. 2014. Forest productivity enhancement based on intensive silviculture (SILIN): Efficiency strategy of forest area utilization. In Nugraha A, editor. Forest productivity enhancement based on intensive silviculture (SILIN): Efficiency strategy of forest area utilization). Banten: Wana Aksara. p. 162–183.
  • Nakai K, Ishizuka M, Ohta S, Timothy J, Jasper M, Lyatura NM, Shau V, Yoshimura T. 2019. Environmental factors and wood qualities of African blackwood, Dalbergia melanoxylon in Tanzanian Miombo natural forest. Journal of Wood Science, 65: 39. doi: 10.1186/s10086-019-1818-0.
  • Pandey D, Brown C. 2000. Teak: a global overview. Unasylva. 51(201): 3–13.
  • Proto AR, Macrí G, Bernardini V, Russo D, Zimbalatti G. 2017. Acoustic evaluation of wood quality with a non-destructive method in standing trees: A first survey in Italy. IForest. 10(4): 700–706. doi: 10.3832/ifor2065-010.
  • Rahmawati RB, Hardiwinoto S, Widiyatno Budiadi Amin Y, Hasanusi A. 2021. Space planting, competition, and productivity of a seven-year-old clonal teak plantation in the East Java Monsoon Forest Area. Jurnal Manajemen Hutan Tropika. 27(1): 123–131. doi: 10.7226/jtfm.27.2.123.
  • Seta GW, Widiyatno Hidayati F, Na’iem M. 2021. Impact of thinning and pruning on tree growth, stress wave velocity, and pilodyn penetration response of clonal teak (Tectona grandis) plantation. Forest Science and Technology. 17(2): 57–66. doi: 10.1080/21580103.2021.1911865.
  • Shimadzu. 2015. Atomic Absorption Spectrophotometer: AA6200. Japan: Shimadzu Corporation.
  • Sheskin DJ. 2011. Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition. New York: Chapman and Hall/CRC. p.445–587 doi: 10.1201/9780429186196.
  • Srivastava SK, Singh KP, Upadhyay RS. 1986. Fine root growth dynamics in teak (Tectona grandis Linn. F.). Canadian Journal of Forest Research. 16: 1360–1364. doi: 10.1139/x86-240.
  • Takahashi M, Marod D, Panuthai S, Hirai K. 2012. Carbon Cycling in Teak Plantations in Comparison with Seasonally Dry Tropical Forests in Thailand. In: Blanco JA, Lo YH, editors. Forest Ecosystems-More than Just Trees. London: IntechOpen. P. 209–2030.
  • Thuynsma R, Kleinert A, Kossmann J, Valentine AJ, Hills PN. 2016. The effects of limiting phosphate on photosynthesis and growth of Lotus japonicus. South African Journal of Botany. 104: 244–248. doi: 10.1016/j.sajb.2016.03.001.
  • Verhaegen D, Fofana IJ, Logossa ZA, Ofori D. 2010. What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and in Indonesia?. Tree Genetics and Genomes, 6(5): 717–733. doi: 10.1007/s11295-010-0286-x.
  • Wang M, Zheng Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. International Journal of Molecular Sciences. 14(4): 7370–7390). doi: 10.3390/ijms14047370.
  • Wang X, Divos F, Pilon C, Brashaw BK, Ross RJ, Pellerin RF, Wang X, Divos F, Pilon C, Brashaw BK, Ross RJ.  2004. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools: A guide for use and interpretation. Madison (WI): Department of Agriculture, Forest Service, Forest Products Laboratory. 12p. doi: 10.2737/FPL-GTR-147.
  • Wang X, Ross RJ, McClellan M, Barbour RJ, Erickson JR, Forsman JW, McGinnis GD. 2000. Strength and Stiffness Assessment of Standing Trees Using a Nondestructive Stress Wave Technique. Research Paper FPL-RP-585. Madison WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. https://www.fpl.fs.usda.gov/documnts/fplrp/fplrp585.pdf.
  • Watanabe Y, Masunaga T, Buri MM, Oladele OI, Wakatsuki T. 2010. Teak (Tectona grandis) growth as influenced by soil physicochemical properties and other site conditions in Ashanti region, Ghana. J Food Agric Environ. 8: 1040–1045.
  • Wehr JB, Smith TE, Menzies NW. 2017. Influence of soil characteristics on teak (Tectona grandis L. F.) establishment and early growth in tropical Northern Australia. Journal of Forest Research 22(3): 153–159. doi: 10.1080/13416979.2017.1283976.
  • Wessels CB, Malan FS, Rypstra T. 2011. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. European Journal of Forest Research. 130: 881–893. doi: 10.1007/s10342-011-0484-6.
  • White TL, Adams WT, Neale DB. 2007. Forest Genetics. Cambridge: CABI Publisher. 628p.
  • Wibowo A, Novitasari D, Damayanti A, Hariyanto B, Chahjono LR, Winduro G, Suwito. 2021. Form Factor and Volume Model for Teak Plantation. Cepu: Perum Perhutani. 26p.
  • Widiyatno, B, Suryanto P, Rinarno YDBM, Prianto SD, Hendro Y, Hosaka T, Numata S. 2017. Recovery of vegetation structure, soil nutrients and late-succession species after shifting cultivation in Central Kalimantan, Indonesia. Journal of Tropical Forest Science. 29(2):151–162. https://jtfs.frim.gov.my/jtfs/article/view/440/330.
  • Widiyatno  , Hidayati F, Hardiwinoto S, Indrioko S, Purnomo S, Jatmoko Tani N, Naiem M. 2020. Selection of dipterocarp species for enrichment planting in a secondary tropical rainforest. Forest Science and Technology. 16(4): 206–215. doi: 10.1080/21580103.2020.1831620.
  • Wu Sj, Xu Jm, Li Gy, Risto V, Lu ZL, Li Bq, Wang W. (2010). Use of the pilodyn for assessing wood properties in standing trees of Eucalyptus clones. Journal of Forestry Research. 21(1): 68–72. doi: 10.1007/s11676-010-0011-5.
  • Wülfing HEW. 1932. Opstandstafels Voor Djatiplantsoenen (Tectona Grandis L. f). Nederlandsch-Indie: Departemen Van Economischne Zaken In Nederlandsch-Indie.
  • Zhou Z, Liang K, Xu D, Zhang Y, Huang G, Ma H. 2012. Effects of calcium, boron and nitrogen fertilization on the growth of teak (Tectona grandis) seedlings and chemical property of acidic soil substrate. New Forests. 43(2): 231–243. doi: 10.1007/s11056-011-9276-6.