1,629
Views
2
CrossRef citations to date
0
Altmetric
Review

Non-neuronal cell outgrowth in C. elegans

ORCID Icon, ORCID Icon &
Article: e1405212 | Received 11 Sep 2017, Accepted 30 Oct 2017, Published online: 07 Dec 2017

References

  • Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999;126:1211–23. PMID:10021340
  • Kujawski S, Lin W, Kitte F, Börmel M, Fuchs S, Arulmozhivarman G, Vogt S, Theil D, Zhang Y, Antos CL. Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins. Dev Cell. 2014;28:573–87. doi:10.1016/j.devcel.2014.01.019. PMID:24561038
  • Macabenta FD, Jensen AG, Cheng YS, Kramer JJ, Kramer SG. Frazzled/DCC facilitates cardiac cell outgrowth and attachment during Drosophila dorsal vessel formation. Dev Biol. 2013;380:233–42. doi:10.1016/j.ydbio.2013.05.007. PMID:23685255
  • Harrill JA, Freudenrich TM, Machacek DW, Stice SL, Mundy WR. Quantitative assessment of neurite outgrowth in human embryonic stem cell-derived nN2™ cells using automated high-content image analysis. NeuroToxicology. 2010;31:277–290 doi:10.1016/j.neuro.2010.02.003. PMID:20188755
  • Baranov VS, Ivaschenko TE, Liehr T, Yarmolinskaya MI. Systems genetics view of endometriosis: a common complex disorder. Eur J Obstet Gynecol Reprod Biol. 2015;185C:59–65. doi:10.1016/j.ejogrb.2014.11.036.
  • Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84. doi:10.1038/nrc2622. PMID:19308067
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. PMID:4366476
  • Byerly L, Russell RL, Cassada RC. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol. 1976;51:23–33. doi:10.1016/0012-1606(76)90119-6. PMID:988845
  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56:110–56. doi:10.1016/0012-1606(77)90158-0. PMID:838129
  • Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979;70:396–417. doi:10.1016/0012-1606(79)90035-6. PMID:478167
  • Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100:64–119. doi:10.1016/0012-1606(83)90201-4. PMID:6684600
  • Hobert O. Specification of the nervous system, WormBook, ed. The C. elegans Research Community, WormBook. 2005; doi:10.1895/wormbook.1.12.1, http://www.wormbook.org.
  • Forrester WC, Garriga G. Genes necessary for C. elegans cell and growth cone migrations. Development. 1997;124:1831–43. PMID:9165130
  • Mehta N, Loria PM, Hobert O. A genetic screen for neurite outgrowth mutants in Caenorhabditis elegans reveals a new function for the F-box ubiquitin ligase component LIN-23. Genetics. 2004;166:1253–67. doi:10.1534/genetics.166.3.1253. PMID:15082545
  • Wightman B, Clark SG, Taskar AM, Forrester WC, Maricq AV, Bargmann CI, Garriga G. The C. elegans gene vab-8 guides posteriorly directed axon outgrowth and cell migration. Development. 1996;122:671–82. PMID:8625818
  • Garriga G, Desai C, Horvitz HR. Cell interactions control the direction of outgrowth, branching and fasciculation of the HSN axons of Caenorhabditis elegans. Development. 1993;117:1071–87. PMID:8325236
  • Stringham E, Pujol N, Vandekerckhove J, Bogaert T. unc-53 controls longitudinal migration in C. elegans. Development. 2002;129:3367–79. PMID:12091307
  • Ackley BD. Wnt-signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans. Dev Neurobiol. 2014;74:781–96. doi:10.1002/dneu.22146. PMID:24214205
  • Newman AP, White JG, Sternberg PW. Morphogenesis of the C. elegans hermaphrodite uterus. Development. 1996;122:3617–26. PMID:8951077
  • Hubbard EJ, Greenstein D. The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn. 2000;218:2–22. doi:10.1002/(SICI)1097-0177(200005)218:1%3c2::AID-DVDY2%3e3.0.CO;2-W. PMID:10822256
  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR. Introduction to C. elegans. Chapter 1. C. elegans II. 2nd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1997.
  • Greenwald IS, Sternberg PW, Horvitz HR. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell. 1983;34:435–44. doi:10.1016/0092-8674(83)90377-X. PMID:6616618
  • Lambie EJ, Kimble J. Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development. 1991;112:231–40. PMID:1769331
  • Newman AP, White JG, Sternberg PW. The Caenorhabditis elegans lin-12 gene mediates induction of ventral uterine specialization by the anchor cell. Development. 1995;121:263–271. PMID:7768171
  • Chang C, Newman AP, Sternberg PW. Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia. Curr. Biol. 1999;9:237–246 doi:10.1016/S0960-9822(99)80112-2. PMID:10074449
  • Ghosh S, Sternberg PW. Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Dev Biol. 2014;396:121–35. doi:10.1016/j.ydbio.2014.09.028. PMID:25281934
  • Sapir A, Choi J, Leikina E, Avinoam O, Valansi C, Chernomordik LV, Newman AP, Podbilewicz B. AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans. Dev Cell. 2007;12:683–698. doi:10.1016/j.devcel.2007.03.003. PMID:17488621
  • Sherwood DR, Sternberg PW. Anchor cell invasion into the vulval epithelium in C. elegans. Dev Cell. 2003;5:21–31. doi:10.1016/S1534-5807(03)00168-0. PMID:12852849
  • Seydoux G, Greenwald I. Cell autonomy of lin-12 function in a cell fate decision in C. elegans. Cell. 1989;57:1237–45. doi:10.1016/0092-8674(89)90060-3. PMID:2736627
  • Gupta BP, Hanna-Rose W, Sternberg PW. Morphogenesis of the vulva and the vulval-uterine connection. WormBook. 2012:1–20. The C. elegans Research Community, PMID:23208727; doi:10.1895/wormbook.1.152.1, http://www.wormbook.org
  • Kimble J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev Biol. 1981;87:286–300. doi:10.1016/0012-1606(81)90152-4. PMID:7286433
  • Hill RJ, Sternberg PW. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature. 1992;358:470–476. doi:10.1038/358470a0. PMID:1641037
  • Ferguson EL, Sternberg PW, Horvitz HR. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature. 1987;326:259–67 doi:10.1038/326259a0. PMID:2881214
  • Sherwood DR, Butler JA, Kramer JM, Sternberg PW. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell. 2005;121:951–62. doi:10.1016/j.cell.2005.03.031. PMID:15960981
  • Hwang BJ, Meruelo AD, Sternberg PW. C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion. Development. 2007;134:669–79. doi:10.1242/dev.02769. PMID:17215301
  • Wang Z, Chi Q, Sherwood DR. MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans. Development. 2014;141:1342–1353 doi:10.1242/dev.102434. PMID:24553288
  • Rimann I, Hajnal A. Regulation of anchor cell invasion and uterine cell fates by the egl-43 Evi-1 proto-oncogene in Caenorhabditis elegans. Dev Biol. 2007;308:187–95. doi:10.1016/j.ydbio.2007.05.023. PMID:17573066
  • Armenti ST, Lohmer LL, Sherwood DR, Nance J. Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development. 2014;141:4640–7. doi:10.1242/dev.115048. PMID:25377555
  • Matus DQ, Li XY, Durbin S, Agarwal D, Chi Q, Weiss SJ, Sherwood DR. In vivo identification of regulators of cell invasion across basement membranes. Sci Signal. 2010;3(120):ra35. doi:10.1126/scisignal.2000654. PMID:20442418
  • Ziel JW, Hagedorn EJ, Audhya A, Sherwood DR. UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans. Nat Cell Biol. 2009;11:183–9. doi:10.1038/ncb1825. PMID:19098902
  • Morrissey MA, Hagedorn EJ, Sherwood DR. Cell invasion through basement membrane: The netrin receptor DCC guides the way. Worm. 2013;2:e26169. doi:10.4161/worm.26169. PMID:24778942
  • Wang Z, Linden LM, Naegeli KM, Ziel JW, Chi Q, Hagedorn EJ, Savage NS, Sherwood DR. UNC-6 (netrin) stabilizes oscillatory clustering of the UNC-40 (DCC) receptor to orient polarity. J Cell Biol. 2014;206:619–33. doi:10.1083/jcb.201405026. PMID:25154398
  • Ihara S, Hagedorn EJ, Morrissey MA, Chi Q, Motegi F, Kramer JM, Sherwood DR. Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans. Nat Cell Biol. 2011;13:641–51. doi:10.1038/ncb2233. PMID:21572423
  • Hagedorn EJ, Yashiro H, Ziel JW, Ihara S, Wang Z, Sherwood DR. Integrin acts upstream of netrin signaling to regulate formation of the anchor cell's invasive membrane in C. elegans. Dev Cell. 2009;17:187–98. doi:10.1016/j.devcel.2009.06.006. PMID:19686680
  • Schindler AJ, Sherwood DR. The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans. Dev Biol. 2011;357:380–91. doi:10.1016/j.ydbio.2011.07.012. PMID:21784067
  • Klerkx EP, Alarcón P, Waters K, Reinke V, Sternberg PW, Askjaer P. Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. Dev Biol. 2009;335:12–21. doi:10.1016/j.ydbio.2009.08.007. PMID:19679119
  • Morf MK, Rimann I, Alexander M, Roy P, Hajnal A. The Caenorhabditis elegans homolog of the Opitz syndrome gene, madd-2/Mid1, regulates anchor cell invasion during vulval development. Dev Biol. 2013;374:108–14. doi:10.1016/j.ydbio.2012.11.019. PMID:23201576
  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode C. elegans. Philos Trans R Soc London Ser B. 1986;314:1–340. doi:10.1098/rstb.1986.0056.
  • Dixon SJ, Roy PJ. Muscle arm development in Caenorhabditis elegans. Development. 2005;132:3079–92. doi:10.1242/dev.01883. PMID:15930100
  • Hall DH, Hedgecock EM. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 1991;65:837–847. doi:10.1016/0092-8674(91)90391-B. PMID:1710172
  • Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990;4:61–85. doi:10.1016/0896-6273(90)90444-K.
  • Zhou HM, Brust-Mascher I, Scholey JM. Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J Neurosci. 2001;21:3749–3755. PMID:11356862
  • Alexander M, Chan KK, Byrne AB, Selman G, Lee T, Ono J, Wong E, Puckrin R, Dixon SJ, Roy PJ. An UNC-40 pathway directs postsynaptic membrane extension in Caenorhabditis elegans. Development. 2009;136:911–22. doi:10.1242/dev.030759. PMID:19211675
  • Bernstein BW, Bamburg JR. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil. 1982;2:1–8. doi:10.1002/cm.970020102. PMID:6890875
  • Blanchoin L, Amann KJ, Higgs HN, Marchand JB, Kaiser DA, Pollard TD. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature. 2000;404:1007–1011. doi:10.1038/35010008. PMID:10801131
  • DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE. Spatial regulation of actin dynamics: a tropomyosin-free, actin- rich compartment at the leading edge. J Cell Sci. 2002;115:4649–4660. doi:10.1242/jcs.00147. PMID:12415009
  • Ono S, Ono K. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics. J Cell Biol. 2002;156:1065–1076. doi:10.1083/jcb.200110013. PMID:11901171
  • Seetharaman A, Selman G, Puckrin R, Barbier L, Wong E, D'Souza SA, Roy PJ. MADD-4 is a secreted cue required for midline-oriented guidance in Caenorhabditis elegans. Dev Cell. 2011;21:669–80. doi:10.1016/j.devcel.2011.07.020. PMID:22014523
  • Chan KK, Seetharaman A, Bagg R, Selman G, Zhang Y, Kim J, Roy PJ. EVA-1 functions as an UNC-40 Co-receptor to enhance attraction to the MADD-4 guidance cue in Caenorhabditis elegans. PLoS Genet. 2014;10:e1004521. doi:10.1371/journal.pgen.1004521. PMID:25122090
  • Alexander M, Selman G, Seetharaman A, Chan KK, D'Souza SA, Byrne AB, Roy PJ. MADD-2, a homolog of the Opitz syndrome protein MID1, regulates guidance to the midline through UNC-40 in Caenorhabditis elegans. Dev Cell. 2010;18:961–72. doi:10.1016/j.devcel.2010.05.016. PMID:20627078
  • Li P, Collins KM, Koelle MR, Shen K. LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans. Elife. 2013;2:e00378. doi:10.7554/eLife.00378. PMID:23539368
  • Dixon SJ, Alexander M, Fernandes R, Ricker N, Roy PJ. FGF negatively regulates muscle membrane extension in Caenorhabditis elegans. Development. 2006;133:1263–1275. doi:10.1242/dev.02300. PMID:16495308
  • Kokel M, Borland CZ, DeLong L, Horvitz HR, Stern MJ. clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in Caenorhabditis elegans. Genes Dev. 1998;12:1425–1437. doi:10.1101/gad.12.10.1425. PMID:9585503
  • Sulston JE, Albertson DG, Thomson JN. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol. 1980;78:542–76. doi:10.1016/0012-1606(80)90352-8. PMID:7409314
  • Emmons SW. Male development, WormBook, ed. The C. elegans Research Community, WormBook. 2005; doi:10.1895/wormbook.1.33.1, http://www.wormbook.org
  • Emmons SW, Sternberg PW. Male Development and Mating Behavior. C. elegans II. 2nd edition. 1997. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; Chapter 12. Ed. Riddle DL, Blumenthal T, Meyer BJ, Priess JR.
  • Baird SE, Fitch DH, Kassem IA, Emmons SW. Pattern formation in the nematode epidermis: determination of the arrangement of peripheral sense organs in the C. elegans male tail. Development. 1991;113:515–26. PMID:1782863
  • Nguyen CQ, Hall DH, Yang Y, Fitch DH. Morphogenesis of the Caenorhabditis elegans male tail tip. Dev Biol. 1999;207:86–106. doi:10.1006/dbio.1998.9173. PMID:10049567
  • Chow KL, Hall DH, Emmons SW. The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development. 1995;121:3615–26. PMID:8582275
  • Chow KL, Emmons SW. HOM-C/Hox genes and four interacting loci determine the morphogenetic properties of single cells in the nematode male tail. Development. 1994;120:2579–92. PMID:7956833
  • Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A. 1996;93:790–4. doi:10.1073/pnas.93.2.790. PMID:8570636
  • Baird SE, Emmons SW. Properties of a class of genes required for ray morphogenesis in Caenorhabditis elegans. Genetics. 1990;126:335–44. PMID:2245913
  • Hill KL, Harfe BD, Dobbins CA, L'Hernault SW. dpy-18 encodes an alpha-subunit of prolyl-4-hydroxylase in caenorhabditis elegans. Genetics. 2000;155:1139–48. PMID:10880476
  • Ko FC, Chow KL. A novel thioredoxin-like protein encoded by the C. elegans dpy-11 gene is required for body and sensory organ morphogenesis. Development. 2002;129:1185–94. PMID:11874914
  • Winter AD, Page AP. Prolyl 4-hydroxylase is an essential procollagen-modifying enzyme required for exoskeleton formation and the maintenance of body shape in the nematode Caenorhabditis elegans. Mol Cell Biol. 2000;20:4084–93. doi:10.1128/MCB.20.11.4084-4093.2000. PMID:10805750
  • Yu RY, Nguyen CQ, Hall DH, Chow KL. Expression of ram-5 in the structural cell is required for sensory ray morphogenesis in Caenorhabditis elegans male tail. EMBO J. 2000;19:3542–55. doi:10.1093/emboj/19.14.3542. PMID:10899109
  • Zhao X, Yang Y, Fitch DH, Herman MA. TLP-1 is an asymmetric cell fate determinant that responds to Wnt signals and controls male tail tip morphogenesis in C. elegans. Development. 2002;129:1497–508. PMID:11880358
  • Mason DA, Rabinowitz JS, Portman DS. dmd-3, a doublesex-related gene regulated by tra-1, governs sex-specific morphogenesis in C. elegans. Development. 2008;135:2373–82. doi:10.1242/dev.017046. PMID:18550714
  • Del Rio-Albrechtsen T, Kiontke K, Chiou SY, Fitch DH. Novel gain-of-function alleles demonstrate a role for the heterochronic gene lin-41 in C. elegans male tail tip morphogenesis. Dev Biol. 2006;297:74–86. doi:10.1016/j.ydbio.2006.04.472. PMID:16806150
  • Chisholm A. Control of cell fate in the tail region of C. elegans by the gene egl-5. Development. 1991;111:921–32. PMID:1879361
  • Simms CL, Baillie DL. A strawberry notch homolog, let-765/nsh-1, positively regulates lin-3/egf expression to promote RAS-dependent vulval induction in C. elegans. Dev Biol. 2010;341:472–85. doi:10.1016/j.ydbio.2010.03.004. PMID:20230814
  • Nelson MD, Zhou E, Kiontke K, Fradin H, Maldonado G, Martin D, Shah K, Fitch DH. A bow-tie genetic architecture for morphogenesis suggested by a genome-wide RNAi screen in Caenorhabditis elegans. PLoS Genet. 2011;7:e1002010. doi:10.1371/journal.pgen.1002010. PMID:21408209
  • Buechner M. Tubes and the single C. elegans excretory cell. Trends Cell Biol. 2002;12:479–84. doi:10.1016/S0962-8924(02)02364-4. PMID:12441252
  • McShea MA, Schmidt KL, Dubuke ML, Baldiga CE, Sullender ME, Reis AL, Zhang S, O'Toole SM, Jeffers MC, Warden RM, et al. Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell migrations and process outgrowth in C. elegans. Dev Biol. 2013;373:1–13. doi:10.1016/j.ydbio.2012.09.017. PMID:23022657
  • Buechner M, Hedgecock EM. Worm Breeder's Gazette. 1992;12:97
  • Sawa H, Lobel L, Horvitz HR. The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. Genes Dev. 1996;10:2189–97. doi:10.1101/gad.10.17.2189. PMID:8804313
  • Park EC, Horvitz HR. Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics. 1986;113:821–52. PMID:3744028
  • Baum PD, Garriga G. Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron. 1997;19:51–62. doi:10.1016/S0896-6273(00)80347-5. PMID:9247263
  • Gettner SN, Kenyon C, Reichardt LF. Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J Cell Biol. 1995;129:1127–41. doi:10.1083/jcb.129.4.1127. PMID:7744961
  • Rogalski TM, Mullen GP, Bush JA, Gilchrist EJ, Moerman DG. UNC-52/perlecan isoform diversity and function in Caenorhabditis elegans. Biochem Soc Trans. 2001;29:171–6. doi:10.1042/bst0290171. PMID:11356148
  • Zhu X, Joh K, Hedgecock EM, Hori K. Identification of epi-1 locus as a laminin alpha chain gene in the nematode Caenorhabditis elegans and characterization of epi-1 mutant alleles. DNA Seq. 1999;10:207–17. doi:10.3109/10425179909033950. PMID:10727078
  • Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, et al. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science. 2000;287:989–94. doi:10.1126/science.287.5455.989. PMID:10669422
  • Pettitt J, Wood WB, Plasterk RH. cdh-3, a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in Caenorhabditis elegans. Development. 1996;122:4149–57. PMID:9012534
  • Poinat P, De Arcangelis A, Sookhareea S, Zhu X, Hedgecock EM, Labouesse M, Georges-Labouesse E. A conserved interaction between beta1 integrin/PAT-3 and Nck-interacting kinase/MIG-15 that mediates commissural axon navigation in C. elegans. Curr Biol. 2002;12:622–31. doi:10.1016/S0960-9822(02)00764-9. PMID:11967148
  • Marcus-Gueret N, Schmidt KL, Stringham EG. Distinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans. Genetics. 2012;190:129–42. doi:10.1534/genetics.111.134429. PMID:21996675
  • Steven R, Kubiseski TJ, Zheng H, Kulkarni S, Mancillas J, Ruiz Morales A, Hogue CW, Pawson T, Culotti J. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell. 1998;92:785–95. doi:10.1016/S0092-8674(00)81406-3. PMID:9529254
  • Manser J, Roonprapunt C, Margolis B. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev Biol. 1997;184:150–64 doi:10.1006/dbio.1997.8516. PMID:9142991
  • Patel N, Thierry-Mieg D, Mancillas JR. Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain. Proc Natl Acad Sci U S A. 1993;90:9181–5. doi:10.1073/pnas.90.19.9181. PMID:8105472
  • Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development. 2009;136:563–74. doi:10.1242/dev.016816. PMID:19168673
  • Otsuka AJ, Jeyaprakash A, García-Añoveros J, Tang LZ, Fisk G, Hartshorne T, Franco R, Born T. The C. elegans unc-104 gene encodes a putative kinesin heavy chain-like protein. Neuron. 1991;6:113–22. doi:10.1016/0896-6273(91)90126-K. PMID:1846075
  • Merz DC, Zheng H, Killeen MT, Krizus A, Culotti JG. Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo. Genetics. 2001;158:1071–80. PMID:11454756
  • Wang Q, Wadsworth WG. The C domain of netrin UNC-6 silences calcium/calmodulin-dependent protein kinase- and diacylglycerol-dependent axon branching in Caenorhabditis elegans. J Neurosci. 2002;22:2274–82. PMID:11896167
  • Altun ZF, Hall DH. Muscle system, head mesodermal cell. In WormAtlas. 2009; doi:10.3908/wormatlas.1.10
  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the ventral nerve cord of Caenorhabditis elegans. Phil Trans Roy Soc Lond. 1976;275B:327–348. doi:10.1098/rstb.1976.0086.
  • Yanowitz JL, Shakir MA, Hedgecock E, Hutter H, Fire AZ, Lundquist EA. UNC-39, the C. elegans homolog of the human myotonic dystrophy-associated homeodomain protein Six5, regulates cell motility and differentiation. Dev Biol. 2004;272:389–402. doi:10.1016/j.ydbio.2004.05.010. PMID:15282156
  • Chisholm AD, Hardin J. Epidermal morphogenesis, WormBook, ed. The C. elegans Research Community, WormBook. 2005; doi:10.1895/wormbook.1.35.1, http://www.wormbook.org
  • Gendreau SB, Moskowitz IP, Terns RM, Rothman JH. The potential to differentiate epidermis is unequally distributed in the AB lineage during early embryonic development in C. elegans. Dev Biol. 1994;166:770–81. doi:10.1006/dbio.1994.1355. PMID:7813794
  • Page BD, Zhang W, Steward K, Blumenthal T, Priess JR. ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos. Genes Dev. 1997;11:1651–61. doi:10.1101/gad.11.13.1651. PMID:9224715
  • Williams-Masson EM, Heid PJ, Lavin CA, Hardin J. The cellular mechanism of epithelial rearrangement during morphogenesis of the Caenorhabditis elegans dorsal hypodermis. Dev Biol. 1998;204:263–76. doi:10.1006/dbio.1998.9048. PMID:9851858
  • Priess JR, Hirsh DI. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986;117:156–73. doi:10.1016/0012-1606(86)90358-1. PMID:3743895
  • Hardin J, Walston T. Models of morphogenesis: the mechanisms and mechanics of cell rearrangement. Curr Opin Genet Dev. 2004;14:399–406. doi:10.1016/j.gde.2004.06.008. PMID:15261656
  • Heid PJ, Raich WB, Smith R, Mohler WA, Simokat K, Gendreau SB, Rothman JH, Hardin J. The zinc finger protein DIE-1 is required for late events during epithelial cell rearrangement in C. elegans. Dev Biol. 2001;236:165–80. doi:10.1006/dbio.2001.0315. PMID:11456452
  • Pocock R, Ahringer J, Mitsch M, Maxwell S, Woollard A. A regulatory network of T-box genes and the even-skipped homologue vab-7 controls patterning and morphogenesis in C. elegans. Development. 2004;131:2373–85. doi:10.1242/dev.01110. PMID:15102704
  • Ghenea S, Boudreau JR, Lague NP, Chin-Sang ID. The VAB-1 Eph receptor tyrosine kinase and SAX-3/Robo neuronal receptors function together during C. elegans embryonic morphogenesis. Development. 2005;132:3679–90. doi:10.1242/dev.01947. PMID:16033794
  • Hoier EF, Mohler WA, Kim SK, Hajnal A. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev. 2000;14:874–86. PMID:10766743
  • Soto MC, Qadota H, Kasuya K, Inoue M, Tsuboi D, Mello CC, Kaibuchi K. The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev. 2002;16:620–32. doi:10.1101/gad.955702. PMID:11877381
  • Patel FB, Bernadskaya YY, Chen E, Jobanputra A, Pooladi Z, Freeman KL, Gally C, Mohler WA, Soto MC. The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Dev Biol. 2008;324:297–309. doi:10.1016/j.ydbio.2008.09.023. PMID:18938151
  • Giuliani C, Troglio F, Bai Z, Patel FB, Zucconi A, Malabarba MG, Disanza A, Stradal TB, Cassata G, Confalonieri S, et al. Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis. PLoS Genet. 2009;5:e1000675. doi:10.1371/journal.pgen.1000675. PMID:19798448
  • Sawa M, Suetsugu S, Sugimoto A, Miki H, Yamamoto M, Takenawa T. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J Cell Sci. 2003;116:1505–18. doi:10.1242/jcs.00362. PMID:12640035
  • Walston T, Guo C, Proenca R, Wu M, Herman M, Hardin J, Hedgecock E. mig-5/Dsh controls cell fate determination and cell migration in C. elegans. Dev Biol. 2006;298:485–97. doi:10.1016/j.ydbio.2006.06.053. PMID:16899238
  • Putzke AP, Hikita ST, Clegg DO, Rothman JH. Essential kinase-independent role of a Fer-like non-receptor tyrosine kinase in Caenorhabditis elegans morphogenesis. Development. 2005;132:3185–95. doi:10.1242/dev.01900. PMID:15958510
  • Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura J, Gengyo-Ando K, Mitani S, et al. Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis. J Biol Chem. 2007;282:8533–44. doi:10.1074/jbc.M611107200. PMID:17237233
  • Mörck C, Vivekanand V, Jafari G, Pilon M. C. elegans ten-1 is synthetic lethal with mutations in cytoskeleton regulators, and enhances many axon guidance defective mutants. BMC Dev Biol. 2010;10:55. doi:10.1186/1471-213X-10-55. PMID:20497576
  • Williams-Masson EM, Malik AN, Hardin J. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development. 1997124:2889–901. PMID:9247332
  • Withee J, Galligan B, Hawkins N, Garriga G. Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration. Genetics. 2004;167:1165–76. doi:10.1534/genetics.103.025676. PMID:15280232
  • Thomas-Virnig CL, Sims PA, Simske JS, Hardin J. The inositol 1,4,5-trisphosphate receptor regulates epidermal cell migration in Caenorhabditis elegans. Curr Biol. 2004;14:1882–7. doi:10.1016/j.cub.2004.10.001. PMID:15498499
  • Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol. 1998;141:297–308. doi:10.1083/jcb.141.1.297. PMID:9531567
  • Raich WB, Agbunag C, Hardin J. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr Biol. 1999;9:1139–46. doi:10.1016/S0960-9822(00)80015-9. PMID:10531027
  • Pásti G, Labouesse M. Epithelial junctions, cytoskeleton, and polarity. WormBook. 2014;4:1–35. doi:10.1895/wormbook.1.56.2.
  • George SE, Simokat K, Hardin J, Chisholm AD. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell. 1998;92:633–43. doi:10.1016/S0092-8674(00)81131-9. PMID:9506518
  • Wang X, Roy PJ, Holland SJ, Zhang LW, Culotti JG, Pawson T. Multiple ephrins control cell organization in C. elegans using kinase-dependent and -independent functions of the VAB-1 Eph receptor. Mol Cell. 1999;4:903–13. doi:10.1016/S1097-2765(00)80220-8. PMID:10635316
  • Chin-Sang ID, George SE, Ding M, Moseley SL, Lynch AS, Chisholm AD. The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell. 1999;99:781–90. doi:10.1016/S0092-8674(00)81675-X. PMID:10619431
  • Ikegami R, Simokat K, Zheng H, Brown L, Garriga G, Hardin J, Culotti J. Semaphorin and Eph receptor signaling guide a series of cell movements for ventral enclosure in C. elegans. Curr Biol. 2012;22:1–11. doi:10.1016/j.cub.2011.12.009. PMID:22197242
  • Roy PJ, Zheng H, Warren CE, Culotti JG. mab-20 encodes Semaphorin-2a and is required to prevent ectopic cell contacts during epidermal morphogenesis in Caenorhabditis elegans. Development. 2000;127:755–67. PMID:10648234
  • Chin-Sang ID, Chisholm AD. Form of the worm: genetics of epidermal morphogenesis in C. elegans. Trends Genet. 2000;16:544–51. doi:10.1016/S0168-9525(00)02143-0. PMID:11102704
  • Nakao F, Hudson ML, Suzuki M, Peckler Z, Kurokawa R, Liu Z, Gengyo-Ando K, Nukazuka A, Fujii T, Suto, F, et al. The PLEXIN PLX-2 and the ephrin EFN-4 have distinct roles in MAB-20/Semaphorin 2A signaling in Caenorhabditis elegans morphogenesis. Genetics. 2007;176:1591–607. doi:10.1534/genetics.106.067116. PMID:17507686
  • Topf U, Chiquet-Ehrismann R. Genetic interaction between Caenorhabditis elegans teneurin ten-1 and prolyl 4-hydroxylase phy-1 and their function in collagen IV-mediated basement membrane integrity during late elongation of the embryo. Mol Biol Cell. 2011;22:3331–43. doi:10.1091/mbc.E10-10-0853. PMID:21795395
  • King RS, Maiden SL, Hawkins NC, Kidd AR, 3rd, Kimble J, Hardin J, Walston TD. The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway. Dev Biol. 2009;328:234–44. doi:10.1016/j.ydbio.2009.01.017. PMID:19298786
  • Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura J, Gengyo-Ando K, Mitani S, et al. Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis. J Biol Chem. 2007;282:8533–44. doi:10.1074/jbc.M611107200. PMID:17237233
  • Hudson ML, Kinnunen T, Cinar HN, Chisholm AD. C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Dev Biol. 2006;294:352–65. doi:10.1016/j.ydbio.2006.02.036. PMID:16677626
  • Sawa M, Takenawa T. Caenorhabditis elegans WASP-interacting protein homologue WIP-1 is involved in morphogenesis through maintenance of WSP-1 protein levels. Biochem Biophys Res Commun. 2006;340:709–17. doi:10.1016/j.bbrc.2005.12.056. PMID:16378591
  • Kubota Y, Tsuyama K, Takabayashi Y, Haruta N, Maruyama R, Iida N, Sugimoto A. The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans. Dev Biol. 2014;391:43–53. doi:10.1016/j.ydbio.2014.04.002. PMID:24721716
  • Fotopoulos N, Wernike D, Chen Y, Makil N, Marte A, Piekny A. Caenorhabditis elegans anillin (ani-1) regulates neuroblast cytokinesis and epidermal morphogenesis during embryonic development. Dev Biol. 2012;383:61 doi:10.1016/j.ydbio.2013.08.024.
  • Antoshechkin I, Han M. The C. elegans evl-20 gene is a homolog of the small GTPase ARL2 and regulates cytoskeleton dynamics during cytokinesis and morphogenesis. Dev Cell. 2002;2:579–91. doi:10.1016/S1534-5807(02)00146-6. PMID:12015966
  • Crowley MR, Head KL, Kwiatkowski DJ, Asch HL, Asch BB. The mouse mammary gland requires the actin-binding protein gelsolin for proper ductal morphogenesis. Dev Biol. 2000;225:407–23. doi:10.1006/dbio.2000.9844. PMID:10985859
  • Roarty K, Shore AN, Creighton CJ, Rosen JM. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. J Cell Biol. 2015;208:351–66. doi:10.1083/jcb.201408058. PMID:25624393
  • Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6:1–11. doi:10.1186/bcr634. PMID:14680479
  • Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM: The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol. 2002;161:337–344. doi:10.1016/S0002-9440(10)64185-5. PMID:12107118
  • Albergaria A, Ribeiro AS, Vieira AF, Sousa B, Nobre AR, Seruca R, Schmitt F, Paredes J. P-cadherin role in normal breast development and cancer. Int J Dev Biol. 2011;55:811–22. doi:10.1387/ijdb.113382aa. PMID:22161837
  • Sternlicht MD, Kouros-Mehr H, Lu P, Werb Z. Hormonal and local control of mammary branching morphogenesis. Differentiation. 2006;74:365–81. doi:10.1111/j.1432-0436.2006.00105.x. PMID:16916375
  • Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, Korach KS. Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology. 2000;141:2982–2994. doi:10.1210/endo.141.8.7609. PMID:10919287
  • Curtis Hewitt S, Couse JF, Korach KS. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action. Breast Cancer Res. 2000;2:345–352. doi:10.1186/bcr79. PMID:11250727
  • Manivannan S, Nelson CM. Dynamics of branched tissue assembly. Stem Cell Res Ther. 2012;3:42. doi:10.1186/scrt133. PMID:23114096
  • Srinivasan K, Strickland P, Valdes A, Shin G, Hinck L: Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell 2003;3(4):371–382. doi:10.1016/S1534-5807(03)00054-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.