44
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of continuous inspiratory resistive breathing trials on corticospinal excitability of lower limb muscles during isometric contraction

, , , &
Pages 157-172 | Received 11 Dec 2021, Accepted 09 Jan 2022, Published online: 12 Aug 2022

References

  • Dempsey JA. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance. J Physiol. 2012;590(17):4129–4144. doi:10.1113/jphysiol.2012.233908
  • Harms CA, Babcock MA, McClaran SR, et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol. 1997;82(5):1573–1583. doi:10.1152/jappl.1997.82.5.1573
  • Romer LM, Lovering AT, Haverkamp HC, et al. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J Physiol. 2006;571(Pt 2):425–439. doi:10.1113/jphysiol.2005.099697
  • Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol. 2008;104(3):879–888. doi:10.1152/japplphysiol.01157.2007
  • Taylor BJ, Romer LM. Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans. J Appl Physiol. 2008;104(5):1442–1451. doi:10.1152/japplphysiol.00428.2007
  • Dempsey JA, Romer L, Rodman J, et al. Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol. 2006;151(2-3):242–250. doi:10.1016/j.resp.2005.12.015
  • Sambaher N, Aboodarda SJ, Behm DG. Bilateral knee extensor fatigue modulates force and responsiveness of the corticospinal pathway in the non-fatigued, dominant elbow flexors. Front Hum Neurosci. 2016;10:18. doi:10.3389/fnhum.2016.00018
  • Sidhu SK, Weavil JC, Venturelli M, et al. Spinal μ-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. J Physiol. 2014;592(22):5011–5024. doi:10.1113/jphysiol.2014.275438
  • Takahashi K, Maruyama A, Hirakoba K, et al. Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Brain Stim. 2011;4(2):90–96. doi:10.1016/j.brs.2010.07.001
  • Katayama K, Iwamoto E, Ishida K, et al. Inspiratory muscle fatigue increases sympathetic vasomotor outflow and blood pressure during submaximal exercise. Am J Physiol Regul Integr Comp Physiol. 2012;302(10):R1167–1175. doi:10.1152/ajpregu.00006.2012
  • Katayama K, Yamashita S, Ishida K, et al. Hypoxic effects on sympathetic vasomotor outflow and blood pressure during exercise with inspiratory resistance. Am J Physiol Regul Integr Comp Physiol. 2013;304(5):R374–382. doi:10.1152/ajpregu.00489.2012
  • Hilty L, Lutz K, Maurer K, et al. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Exp Physiol. 2011;96(5):505–517. doi:10.1113/expphysiol.2010.056226
  • Sidhu SK, Cresswell AG, Carroll TJ. Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion. J Appl Physiol. 2012;113(3):401–409. doi:10.1152/japplphysiol.00486.2012
  • Yunoki T, Matsuura R, Yamanaka R, et al. Relationship between motor corticospinal excitability and ventilatory response during intense exercise. Eur J Appl Physiol. 2016;116(6):1117–1126. doi:10.1007/s00421-016-3374-2
  • Ozaki I, Kurata K. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring. Clin Neurophysiol. 2015;126(11):2162–2169. doi:10.1016/j.clinph.2014.12.032
  • Seyal M, Mull B, Gage B. Increased excitability of the human corticospinal system with hyperventilation. Electroencephalogr Clin Neurophysiol. 1998;109(3):263–267. doi:10.1016/S0924-980X(98)00022-8
  • Coast JR, Clifford PS, Henrich TW, et al. Maximal inspiratory pressure following maximal exercise in trained and untrained subjects. Med Sci Sports Exerc. 1990;22(6):811–815. doi:10.1249/00005768-199012000-00013
  • Shirakawa K, Yunoki T, Afroundeh R, et al. Voluntary breathing increases corticospinal excitability of lower limb muscle during isometric contraction. Respir Physiol Neurobiol. 2015;217:40–45. doi:10.1016/j.resp.2015.07.003
  • Kalmar JM. On task: Considerations and future directions for studies of corticospinal excitability in exercise neuroscience and related disciplines. Appl Physiol Nutr Metab. 2018;43(11):1113–1121. doi:10.1139/apnm-2018-0123
  • Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381.
  • Damron LA, Dearth DJ, Hoffman RL, et al. Quantification of the corticospinal silent period evoked via transcranial magnetic stimulation. J Neurosci Methods. 2008;173(1):121–128. doi:10.1016/j.jneumeth.2008.06.001
  • Zghal F, Cottin F, Kenoun I, et al. Improved tolerance of peripheral fatigue by the central nervous system after endurance training. Eur J Appl Physiol. 2015;115(7):1401–1415. doi:10.1007/s00421-015-3123-y
  • Aboodarda SJ, Sambaher N, Millet GY, et al. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Neuroscience. 2017;340:477–486. doi:10.1016/j.neuroscience.2016.10.065
  • Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed Hillsdale (New York): Lawrence Erlbaum Associates; 1988.
  • Lansing RW, Im BS, Thwing JI, et al. The perception of respiratory work and effort can be independent of the perception of air hunger. Am J Respir Crit Care Med. 2000;162(5):1690–1696. doi:10.1164/ajrccm.162.5.9907096
  • Stendardi L, Grazzini M, Gigliotti F, et al. Dyspnea and leg effort during exercise. Respir Med. 2005;99(8):933–942. doi:10.1016/j.rmed.2005.02.005
  • Johnson BD, Babcock MA, Suman OE, et al. Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol. 1993;460:385–405. doi:10.1113/jphysiol.1993.sp019477
  • Morélot-Panzini C, Demoule A, Straus C, et al. Dyspnea as a noxious sensation: inspiratory threshold loading may trigger diffuse noxious inhibitory controls in humans. J Neurophysiol. 2007;97(2):1396–1404. doi:10.1152/jn.00116.2006
  • Hill JM. Discharge of group IV phrenic afferent fibers increases during diaphragmatic fatigue. Brain Res. 2000;856(1-2):240–244. doi:10.1016/S0006-8993(99)02366-5
  • Freedman S, Cooke NT, Moxham J. Production of lactic acid by respiratory muscles. Thorax. 1983;38(1):50–54. doi:10.1136/thx.38.1.50
  • Renggli AS, Verges S, Notter DA, et al. Development of respiratory muscle contractile fatigue in the course of hyperpnoea. Respir Physiol Neurobiol. 2008;164(3):366–372. doi:10.1016/j.resp.2008.08.008
  • Gruet M, Temesi J, Rupp T, et al. Dynamics of corticospinal changes during and after high-intensity quadriceps exercise. Exp Physiol. 2014;99(8):1053–1064. doi:10.1113/expphysiol.2014.078840
  • Sidhu SK, Weavil JC, Thurston TS, et al. Fatigue-related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise. J Physiol. 2018;596(19):4789–4801. doi:10.1113/JP276460
  • Chen R, Lozano AM, Ashby P. Mechanism of the silent period following transcranial magnetic stimulation. Exp Brain Res. 1999;128(4):539–542. doi:10.1007/s002210050878
  • Inghilleri M, Berardelli A, Marchetti P, et al. Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans. Exp Brain Res. 1996;109(3):467–472. doi:10.1007/BF00229631
  • Teixeira AL, Fernandes IA, Vianna LC. GABAA receptors modulate sympathetic vasomotor outflow and the pressor response to skeletal muscle metaboreflex activation in humans. J Physiol. 2019;597(16):4139–4150. doi:10.1113/JP277929
  • Li S, Rymer WZ. Voluntary breathing influences corticospinal excitability of nonrespiratory finger muscles. J Neurophysiol. 2011;105(2):512–521. doi:10.1152/jn.00946.2010
  • Coast JR, Jr TG, Cassidy SS. Inhibition of skeletal muscle activity by lung expansion in the dog. J Appl Physiol. 1987;62(5):2058–2065. doi:10.1152/jappl.1987.62.5.2058
  • Pickar JG, Hill JM, Kaufman MP. Stimulation of vagal afferents inhibits locomotion in mesencephalic cats. J Appl Physiol. 1993;74(1):103–110. doi:10.1152/jappl.1993.74.1.103
  • Yacyshyn AF, Woo EJ, Price MC, et al. Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation. Exp Brain Res. 2016;234(12):3457–3463. doi:10.1007/s00221-016-4742-1
  • Power KE, Lockyer EJ, Forman DA, et al. Modulation of motoneurone excitability during rhythmic motor outputs. Appl Physiol Nutr Metab. 2018;43(11):1176–1185. doi:10.1139/apnm-2018-0077
  • Löllgen H, Graham T, Sjogaard G. Muscle metabolites, force, and perceived exertion bicycling at varying pedal rates. Med Sci Sports Exerc. 1980;12(5):345–351. doi:10.1249/00005768-198025000-00008
  • Scheuermann BW, McConnell JHT, Barstow TJ. EMG and oxygen uptake responses during slow and fast ramp exercise in humans. Exp Physiol. 2002;87(1):91–100. doi:10.1113/eph8702246

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.