2,158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biosensor in smart food traceability system for food safety and security

, , & ORCID Icon
Article: 2310908 | Received 12 Nov 2023, Accepted 23 Jan 2024, Published online: 01 Feb 2024

References

  • WHO. 2015. WHO estimates of the global burden of foodborne diseases. www.who.int
  • FAO. The state of food security and nutrition in the world 2020. The State Of Food Security And Nutrition In The World 2020. 2020. doi: 10.4060/CA9692EN
  • Mc Carthy U, Uysal I, Badia-Melis R, et al. Global food security – issues, challenges and technological solutions. Trends Food Sci Technol. 2018;77:11–23. doi: 10.1016/J.TIFS.2018.05.002
  • WHO. 2022, May 19. Food safety. https://www.who.int/news-room/fact-sheets/detail/food-safety
  • UN. n.d. Goal 12: Ensure sustainable consumption and production patterns. [cited 2023 Mar 3]. https://www.un.org/sustainabledevelopment/sustainable-consumption-production/
  • Chen S, Brahma S, Mackay J, et al. The role of smart packaging system in food supply chain. J Food Sci. 2020;85(3):517–525. doi: 10.1111/1750-3841.15046
  • Reynolds C, Goucher L, Quested T, et al. Review: consumption-stage food waste reduction interventions – what works and how to design better interventions. Food Policy. 2019;83:7–27. doi: 10.1016/J.FOODPOL.2019.01.009
  • Yu Z, Jung D, Park S, et al. Smart traceability for food safety. Crit Rev Food Sci Nutr. 2020;62(4):905–916. doi: 10.1080/10408398.2020.1830262
  • Ma Z, Meliana C, Munawaroh HSH, et al. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. Chemosphere. 2022;306:135515. doi: 10.1016/J.CHEMOSPHERE.2022.135515
  • Ukhurebor KE, Adetunji CO. Relevance of biosensor in climate smart organic agriculture and their role in environmental sustainability: what has been done and what we need to do? 2021. pp. 115–136. doi: 10.1007/978-3-030-66165-6_7
  • Mishra GK, Barfidokht A, Tehrani F, et al. Food safety analysis using electrochemical biosensors. Foods 2018. 2018;7(9):141. doi: 10.3390/FOODS7090141
  • Adetunji CO, Nwankwo W, Ukhurebor KE, et al. Application of biosensor for the identification of various pathogens and pests mitigating against the agricultural production: recent advances. In: Pudake RN, Jain U, Kole C, editors. Biosensors in Agriculture: Recent Trends and Future Perspectives. 2021. pp. 169–189. doi:10.1007/978-3-030-66165-6_9.
  • Ali AA, Altemimi AB, Alhelfi N, et al. Application of biosensors for detection of pathogenic food bacteria: a review. Biosensors (Basel). 2020;10(6):58. doi: 10.3390/BIOS10060058
  • Malvano F, Pilloton R, Albanese D. Label-free impedimetric biosensors for the control of food safety–a review. Int J Environ Anal Chem. 2020;100(4):468–491. doi: 10.1080/03067319.2019.1667096
  • Patel G, Pillai V, Bhatt P, et al. Application of nanosensors in the food industry. In: Han B, Tomer VK, Nguyen TA, Farmani A, Kumar Singh P, editors. Nanosensors for smart cities. Netherlands: Elsevier; 2020. pp. 355–368 doi:10.1016/B978-0-12-819870-4.00021-9
  • Thakur M, Wang B, Verma ML. Development and applications of nanobiosensors for sustainable agricultural and food industries: recent developments, challenges and perspectives. Environ Technol Innov. 2022;26:102371. doi: 10.1016/j.eti.2022.102371
  • Zhang Z, Lou Y, Guo C, et al. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol. 2021;118:569–588. doi: 10.1016/j.tifs.2021.10.024
  • Qian J, Ruiz-Garcia L, Fan B, et al. Food traceability system from governmental, corporate, and consumer perspectives in the European Union and China: a comparative review. Trends Food Sci Technol. 2020;99:402–412. doi: 10.1016/J.TIFS.2020.03.025
  • Islam S, Cullen JM. Food traceability: a generic theoretical framework. Food Control. 2021;123:107848. doi: 10.1016/J.FOODCONT.2020.107848
  • ASEAN. 2016. ASEAN Food Safety Policy. www.asean.org
  • Liu R, Gao Z, Nayga RM, et al. Consumers’ valuation for food traceability in China: does trust matter? Food Policy. 2019;88:101768. doi: 10.1016/J.FOODPOL.2019.101768
  • Dima A, Arvaniti E, Stylios C, et al. Adapting open innovation practices for the creation of a traceability system in a meat-producing industry in northwest Greece. Sustainability. 2022;14(9):5111. doi: 10.3390/su14095111
  • Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. Trends Analyt Chem. 2020;128:115906. doi: 10.1016/J.TRAC.2020.115906
  • Zhou C, Zou H, Sun C, et al. Recent advances in biosensors for antibiotic detection: selectivity and signal amplification with nanomaterials. Food Chem. 2021;361:130109. doi: 10.1016/J.FOODCHEM.2021.130109
  • da Paixao Teixeira JL, dos Santos Carames ET, Baptista DP, et al. Vibrational spectroscopy and chemometrics tools for authenticity and improvement the safety control in goat milk. Food Control. 2020;112:107105. doi: 10.1016/j.foodcont.2020.107105
  • Kunyaboon S, Thumanu K, Park JW, et al. Evaluation of lipid oxidation, volatile compounds and vibrational spectroscopy of silver carp (hypophthalmichthys molitrix) during ice storage as related to the quality of its washed mince. Foods. 2021;10(3):495. doi: 10.3390/foods10030495
  • Singh H, Singh G, Kaur N, et al. Pattern-based colorimetric sensor array to monitor food spoilage using automated high-throughput analysis. Biosens Bioelectron. 2022;196:113687. doi: 10.1016/j.bios.2021.113687
  • An X, Zuo P, Ye BC. A single cell droplet microfluidic system for quantitative determination of food-borne pathogens. Talanta. 2020;209:120571. doi: 10.1016/j.talanta.2019.120571
  • Xiang X, Shang Y, Ye Q, et al. A salmonella serogroup rapid identification system for food safety based on high throughput microfluidic chip combined with recombinase aided amplification. Sensors And Actuat B Chem. 2022;357:131402. doi: 10.1016/j.snb.2022.131402
  • Balamurugan S, Ayyasamy A, Joseph KS. IoT-blockchain driven traceability techniques for improved safety measures in food supply chain. Int j Inf Tecnol. 2022;14(2):1087–1098. doi: 10.1007/s41870-020-00581-y
  • Lu Y, Li P, Xu H. A food anti-counterfeiting traceability system based on blockchain and internet of things. Procedia Comput Sci. 2022;199:629–636. doi: 10.1016/j.procs.2022.01.077
  • Wang X, Wang Y, Guo C, et al. A pattern-free paper enzyme biosensor for one-step detection of fish freshness indicator hypoxanthine with a microfluidic aggregation effect. Food Chem. 2022;405:134811. doi: 10.1016/J.FOODCHEM.2022.134811
  • Lin K, Chavalarias D, Panahi M, et al. Mobile-based traceability system for sustainable food supply networks. Nature Food. 2020;1(11):673–679. doi: 10.1038/s43016-020-00163-y
  • Kaya HO, Cetin AE, Azimzadeh M, et al. Pathogen detection with electrochemical biosensors: advantages, challenges and future perspectives. J Electroanal Chem. 2021;882:114989. doi: 10.1016/J.JELECHEM.2021.114989
  • Neethirajan S, Ragavan V, Weng X, et al. Biosensors for sustainable food engineering: challenges and perspectives. Biosensors 2018. 2018;8(1):23. doi: 10.3390/BIOS8010023
  • Zhan F, Wang T, Iradukunda L, et al. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, phytophthora infestans. Anal Chim Acta. 2018;1036:153–161. doi: 10.1016/J.ACA.2018.06.083
  • Bukhamsin A, Ait Lahcen A, Filho JDO, et al. Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming. Biosens Bioelectron. 2022;214:114515. doi: 10.1016/J.BIOS.2022.114515
  • Olias LG, Otero AR, Cameron PJ, et al. A soil microbial fuel cell-based biosensor for dissolved oxygen monitoring in water. Electrochimica Acta. 2020;362:137108. doi: 10.1016/J.ELECTACTA.2020.137108
  • Ma Z, Liu J, Li H, et al. A fast and easily parallelizable biosensor method for measuring extractable tetracyclines in soils. Environ Sci Technol. 2019;54(2):758–767. doi: 10.1021/ACS.EST.9B04051/SUPPL_FILE/ES9B04051_SI_001.PDF
  • Bae JW, Seo HB, Belkin S, et al. An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Anal Bioanal Chem. 2020;412(14):3373–3381. doi: 10.1007/S00216-020-02469-Z/METRICS
  • Liu Y, Guo M, Du R, et al. A gas reporting whole-cell microbial biosensor system for rapid on-site detection of mercury contamination in soils. Biosens Bioelectron. 2020;170:112660. doi: 10.1016/J.BIOS.2020.112660
  • Kumar V, Arora K. Trends in nano-inspired biosensors for plants. Mater Sci Energy Technol. 2020;3:255–273. doi: 10.1016/J.MSET.2019.10.004
  • Wang X, Cheng M, Yang Q, et al. A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress. Sci Total Environ. 2019;697:134097. doi: 10.1016/J.SCITOTENV.2019.134097
  • Mohtar LG, Aranda P, Messina GA, et al. Amperometric biosensor based on laccase immobilized onto a nanostructured screen-printed electrode for determination of polyphenols in propolis. Microchem J. 2019;144:13–18. doi: 10.1016/J.MICROC.2018.08.038
  • Ye Y, Ji J, Sun Z, et al. Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. Trends Analyt Chem. 2020;122:115718. doi: 10.1016/J.TRAC.2019.115718
  • Bougadi ET, Kalogianni DP. Paper-based DNA biosensor for food authenticity testing. Food Chem. 2020;322:126758. doi: 10.1016/J.FOODCHEM.2020.126758
  • Li L, Zhang M, Chen W. Gold nanoparticle-based colorimetric and electrochemical sensors for the detection of illegal food additives. J Food Drug Anal. 2020;28(4):641. doi: 10.38212/2224-6614.3114
  • Dey A, Sarkar SK. Fabrication and application of TiO2 based thin film capacitive biosensor towards fruit freshness detection on silicon substrate. Silicon. 2021;13(9):3031–3037. doi: 10.1007/s12633-020-00638-4
  • Lorenzo JM, Munekata PE, Muchenje V, et al. Biosensors applied to quantification of ethanol in beverages. In: Grumezescu AM, Holban AM, editors. Engineering tools in the beverage industry. Vol. 3. United Kingdom: The Science of Beverages; 2019. pp. 447–468. doi:10.1016/B978-0-12-815258-4.00015-9
  • Xiong X, Tan Y, Mubango E, et al. Rapid freshness and survival monitoring biosensors of fish: progress, challenge, and future perspective. Trends Food Sci Technol. 2022;129:61–73. doi: 10.1016/J.TIFS.2022.08.011
  • Aquino A, Conte-Junior CA. A systematic review of food allergy: nanobiosensor and food allergen detection. Biosensors 2020. 2020;10(12):194. doi: 10.3390/BIOS10120194
  • Zhou X, Pullman M, Xu Z. The impact of food supply chain traceability on sustainability performance. Oper Manag Res. 2021;15(1–2):93–115. doi: 10.1007/S12063-021-00189-W/TABLES/19
  • Majdinasab M, Mishra RK, Tang X, et al. Detection of antibiotics in food: new achievements in the development of biosensors. Trends Analyt Chem. 2020;127:115883. doi: 10.1016/J.TRAC.2020.115883
  • Nnachi RC, Sui N, Ke B, et al. Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environ Int. 2022;166:107357. doi: 10.1016/J.ENVINT.2022.107357
  • Zhou Q, Tang D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. Trends Analyt Chem. 2020;124:115814. doi: 10.1016/J.TRAC.2020.115814
  • Bhavadharini B, Kavimughil M, Malini B, et al. Recent advances in biosensors for detection of chemical contaminants in food—a review. Food Anal Methods. 2022;15(6):1545–1564. doi: 10.1007/S12161-021-02213-Y
  • Kadam US, Hong JC. Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment. Trends Environ Anal Chem. 2022;36:e00184. doi: 10.1016/J.TEAC.2022.E00184
  • Kundu M, Krishnan P, Kotnala RK, et al. Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci Technol. 2019;88:157–178. doi: 10.1016/J.TIFS.2019.03.024
  • Mondal R, Dam P, Chakraborty J, et al. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon. 2022;8(12):e12207. doi: 10.1016/J.HELIYON.2022.E12207
  • Sellappan L, Manoharan S, Sanmugam A, et al. Role of nanobiosensors and biosensors for plant virus detection. Nanosensors For Smart Agri. 2022;493–506. doi: 10.1016/B978-0-12-824554-5.00004-5
  • Bhardwaj A, Sharma N, Sharma V, et al. Smart Food Packaging Systems. Trends Environ Anal Chem. 2022;235–260. doi: 10.1007/978-981-19-1746-2_8
  • Chen Y, Yang Y, Wang Y, et al. Development of an Escherichia coli-based electrochemical biosensor for mycotoxin toxicity detection. Bioelectrochemistry. 2020;133:107453. doi: 10.1016/J.BIOELECHEM.2019.107453
  • Salgado PR, di Giorgio L, Musso YS, et al. Recent developments in smart food packaging focused on biobased and biodegradable polymers. Front Sustain Food Syst. 2021;5:125. doi: 10.3389/FSUFS.2021.630393/BIBTEX
  • Rodrigues C, Souza VGL, Coelhoso I, et al. Bio-based sensors for smart food packaging—Current applications and future trends. Sensors 2021. 2021;21(6):2148. doi: 10.3390/S21062148
  • Madhusudan P, Chellukuri N, Shivakumar N. Smart packaging of food for the 21st century–a review with futuristic trends, their feasibility and economics. Mater Today Proc. 2018;5(10):21018–21022. doi: 10.1016/J.MATPR.2018.06.494
  • Zheng L, Cai G, Wang S, et al. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron. 2018;124–125:143–149. doi: 10.1016/J.BIOS.2018.10.006
  • Chaudhary V, Bangar SP, Thaku N, et al. Recent advancements in smart biogenic packaging: reshaping the future of the food packaging industry. Polymers. 2022;14(4):829. doi: 10.3390/POLYM14040829
  • el Bilali H, Callenius C, Strassner C, et al. Food and nutrition security and sustainability transitions in food systems. Food And Energy Security. 2018;8(2):e00154. doi: 10.1002/FES3.154
  • FAO. Sustainable food systems concept and framework. Rome: FAO; 2018.
  • Cole MB, Augustin MA, Robertson MJ, et al. The science of food security. Npj Sci Food. 2018;2(1):1–8. doi: https://doi.org/10.1038/s41538-018-0021-9
  • Yasmin J, Ahmed MR, Cho B-K. Biosensors and their applications in food safety: a review. J Biosyst Eng. 2016;41(3):240–254. doi: 10.5307/JBE.2016.41.3.240
  • Huang C, Zhao J, Lu R, et al. A phage-based magnetic relaxation switching biosensor using bioorthogonal reaction signal amplification for salmonella detection in foods. Food Chem. 2022;400:134035. doi: 10.1016/J.FOODCHEM.2022.134035
  • Wang Y, Li H, Zhou J, et al. An antifouling polydopamine-based fluorescent aptasensor for determination of arginine kinase. Food Sci Hum Wellness. 2022;12(3):737–744. doi: 10.1016/J.FSHW.2022.09.007
  • Man Y, Ban M, Li A, et al. A microfluidic colorimetric biosensor for in-field detection of salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Food Chem. 2021;354:129578. doi: 10.1016/J.FOODCHEM.2021.129578
  • Bacchu MS, Ali MR, Das S, et al. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar typhi in real samples. Anal Chim Acta. 2022;1192:339332. doi: 10.1016/J.ACA.2021.339332
  • Dehghani Z, Mohammadnejad J, Hosseini M, et al. Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chem. 2019;309:125690. doi: 10.1016/J.FOODCHEM.2019.125690
  • Cheng X, Liu W, Wang Z, et al. Improved triple-module fluorescent biosensor for the rapid and ultrasensitive detection of campylobacter jejuni in livestock and dairy. Food Control. 2022;137:108905. doi: 10.1016/J.FOODCONT.2022.108905
  • Sun D, Fan T, Liu F, et al. A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E. coli O157:H7. Biosens Bioelectron. 2022a;212:114390. doi: 10.1016/J.BIOS.2022.114390
  • Zhou Y, Li Z, Huang J, et al. Development of a phage-based electrochemical biosensor for detection of Escherichia coli O157: H7 GXEC-N07. Bioelectrochemistry. 2022b;150:108345. doi: 10.1016/J.BIOELECHEM.2022.108345
  • Pandit C, Alajangi HK, Singh J, et al. Development of magnetic nanoparticle assisted aptamer-quantum dot based biosensor for the detection of Escherichia coli in water samples. Sci Total Environ. 2022;831:154857. doi: 10.1016/J.SCITOTENV.2022.154857
  • Sobhan A, Lee J, Park MK, et al. Rapid detection of Yersinia enterocolitica using a single–walled carbon nanotube-based biosensor for kimchi product. LWT. 2019;108:48–54. doi: 10.1016/J.LWT.2019.03.037
  • Wei W, Lin H, Hao T, et al. DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosens Bioelectron. 2021;186:113305. doi: 10.1016/J.BIOS.2021.113305
  • Ali MR, Bacchu MS, Das S, et al. Label free flexible electrochemical DNA biosensor for selective detection of shigella flexneri in real food samples. Talanta. 2022;253:123909. doi: 10.1016/J.TALANTA.2022.123909
  • Ouyang Q, Zhang M, Yang Y, et al. Mesoporous silica-modified upconversion biosensor coupled with real-time ion release properties for ultrasensitive detection of staphylococcus aureus in meat. Food Control. 2022;145:109444. doi: 10.1016/J.FOODCONT.2022.109444
  • Ali MR, Bacchu MS, Setu MAA, et al. Development of an advanced DNA biosensor for pathogenic vibrio cholerae detection in real sample. Biosens Bioelectron. 2021;188:113338. doi: 10.1016/J.BIOS.2021.113338
  • Nasrin F, Khoris IM, Chowdhury AD, et al. Impedimetric biosensor of norovirus with low variance using simple bioconjugation on conductive polymer-au nanocomposite. Sensors and Actuat B Chem. 2022;369:132390. doi: 10.1016/J.SNB.2022.132390
  • Cho CH, Park TJ, Park JP. Affinity peptide-based electrochemical biosensor for the highly sensitive detection of bovine rotavirus. Biotechnol Bioproc E. 2022;27(4):607–614. doi: 10.1007/s12257-022-0044-6
  • Chaudhari PP, Chau LK, Tseng YT, et al. A fiber optic nanoplasmonic biosensor for the sensitive detection of ampicillin and its analogs. Mikrochim Acta. 2020;187(7):1–11. doi: 10.1007/s00604-020-04381-w
  • Yuan R, Yan Z, Shaga A, et al. Design and fabrication of an electrochemical sensing platform based on a porous organic polymer for ultrasensitive ampicillin detection. Sensors and Actuat B Chem. 2020;327:128949. doi: 10.1016/J.SNB.2020.128949
  • Xiu Y, Luo R, Han B, et al. Construction of Co@C hybrid nanostructure: electrochemical biosensor for detection of penicillin sodium in milk. Food Anal Methods. 2019;13(3):617–628. doi: 10.1007/S12161-019-01677-3/METRICS
  • Tian L, Zhang Y, Wang L, et al. Ratiometric Dual Signal-Enhancing-Based Electrochemical Biosensor for Ultrasensitive Kanamycin Detection. ACS Appl Mater Interfaces. 2020;12(47):52713–52720. doi: 10.1021/ACSAMI.0C15898/SUPPL_FILE/AM0C15898_SI_001.PDF
  • Akbarzadeh S, Khajehsharifi H, Hajihosseini S. Detection of oxytetracycline using an electrochemical label-free aptamer-based biosensor. Biosensors 2022. 2022;12(7):468. doi: 10.3390/BIOS12070468
  • Jampasa S, Pummoree J, Siangproh W, et al. “Signal-on” electrochemical biosensor based on a competitive immunoassay format for the sensitive determination of oxytetracycline. Sensors and Actuat B Chem. 2020;320:128389. doi: 10.1016/J.SNB.2020.128389
  • Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Rostami S, et al. Development of an electrochemical biosensor for impedimetric detection of tetracycline in milk. J Food Sci Technol. 2020;57(12):4697–4706. doi: 10.1007/S13197-020-04506-2/METRICS
  • Yan X, Wang Y, Kou Q, et al. A novel aptasensor based on Fe3O4/Au/g-C3N4 for sensitive detection of sulfameter in food matrices. Sensors and Actuat B Chem. 2021;353:131148. doi: 10.1016/J.SNB.2021.131148
  • Zhang Y, Zhao C, Bi H, et al. A cell-free paper-based biosensor dependent on allosteric transcription factors (aTfs) for on-site detection of harmful metals Hg2+ and Pb2+ in water. J Hazard Mater. 2022;438:129499. doi: 10.1016/J.JHAZMAT.2022.129499
  • Singh AK, Dhiman TK, Lakshmi VSGB, et al. Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry. 2020;137:107684. doi: 10.1016/J.BIOELECHEM.2020.107684
  • Wu Z, Sun DW, Pu H, et al. A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting aflatoxin B1. Talanta. 2022;252:123773. doi: 10.1016/J.TALANTA.2022.123773
  • Wei L, Wang Z, Chen Y. Optical biosensor for ochratoxin a detection in grains using an enzyme-mediated click reaction and polystyrene nanoparticles. J Agric Food Chem. 2022;70(46):14798–14804. doi: 10.1021/ACS.JAFC.2C05137/SUPPL_FILE/JF2C05137_SI_001.PDF
  • Lu L, Yuan W, Xiong Q, et al. One-step grain pretreatment for ochratoxin A detection based on bipolar electrode-electrochemiluminescence biosensor. Anal Chim Acta. 2020;1141:83–90. doi: 10.1016/J.ACA.2020.10.035
  • Li Y, Peng Z, Li Y, et al. An aptamer-array-based sample-to-answer biosensor for ochratoxin a detection via fluorescence resonance energy transfer. Chemosensors 2021. 2021;9(11):309. doi: 10.3390/CHEMOSENSORS9110309
  • Yang C, Abbas F, Rhouati A, et al. Design of a quencher-free fluorescent aptasensor for ochratoxin a detection in red wine based on the guanine-quenching ability. Biosensors (Basel). 2022;12(5):297. doi: 10.3390/BIOS12050297
  • Ouyang Q, Wang L, Ahmad W, et al. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021;349:129157. doi: 10.1016/J.FOODCHEM.2021.129157
  • Peng L, Zhu J, Yang B, et al. A green photocatalytic-biosensor for colorimetric detection of pesticide (carbaryl) based on inhibition of acetylcholinesterase. Talanta. 2022;246:123525. doi: 10.1016/J.TALANTA.2022.123525
  • Nunes EW, Silva MKL, Rascón J, et al. Acetylcholinesterase biosensor based on functionalized renewable carbon platform for detection of carbaryl in food. Biosensors (Basel). 2022;12(7):486. doi: 10.3390/BIOS12070486
  • Qi S, Sun A, Dong X, et al. High-stable perovskite nanocrystal fluorescent probe-based aptasensor for ultrasensitive detection of peanut allergen Ara h1. Sensors and Actuat B Chem. 2022;379:133232. doi: 10.1016/J.SNB.2022.133232
  • Jiang H, Guo Q, Zhang C, et al. Microfluidic origami nano-aptasensor for peanut allergen Ara h1 detection. Food Chem. 2021;365:130511. doi: 10.1016/J.FOODCHEM.2021.130511
  • Wang Y, Li L, Li H, et al. A fluorometric sandwich biosensor based on rationally imprinted magnetic particles and aptamer modified carbon dots for the detection of tropomyosin in seafood products. Food Control. 2021;132:108552. doi: 10.1016/J.FOODCONT.2021.108552
  • Li R, Zhang Y, Zhao J, et al. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. J Food Compost Anal. 2022;114:104776. doi: 10.1016/J.JFCA.2022.104776
  • Shin JH, Park TJ, Hyun MS, et al. A phage virus-based electrochemical biosensor for highly sensitive detection of ovomucoid. Food Chem. 2022;378:132061. doi: 10.1016/J.FOODCHEM.2022.132061
  • Wang J, Li H, Li C, et al. EIS biosensor based on a novel myoviridae bacteriophage SEP37 for rapid and specific detection of Salmonella in food matrixes. Food Res Int. 2022;158:111479. doi: 10.1016/J.FOODRES.2022.111479
  • Yang J, Zhang Y, Lu Y. A fluorescence detection method for the determination of β-lactoglobulin in foods. Anal Methods. 2022;14(19):1872–1879. doi: https://doi.org/10.1039/D2AY00158F
  • Yang J, Zhang Y, Wu L, et al. A coffee-ring effect-based paper sensor chip for the determination of beta-lactoglobulin in foods via a smartphone. Sensors and Actuat B Chem. 2022;374:132807. doi: 10.1016/J.SNB.2022.132807
  • Kim Y, Choi H, Shin WH, et al. Development of colorimetric whole-cell biosensor for detection of heavy metals in environment for public health. Int J Environ Res Public Health 2021. 2021;18(23):12721. doi: 10.3390/IJERPH182312721
  • Zhai H, Wang Y, Yin J, et al. Electrochemiluminescence biosensor for determination of lead(II) ions using signal amplification by Au@SiO2 and tripropylamine-endonuclease assisted cycling process. Microchim Acta. 2022;189(9):1–11. doi: 10.1007/S00604-022-05429-9/METRICS
  • Sciuto EL, Petralia S, van der Meer JR, et al. Miniaturized electrochemical biosensor based on whole-cell for heavy metal ions detection in water. Biotech & Bioengineering. 2020;118(4):1456–1465. doi: 10.1002/BIT.27646
  • Lukyanenko KA, Denisov IA, Sorokin VV, et al. Handheld enzymatic luminescent biosensor for rapid detection of heavy metals in water samples. Chemosensors. 2019;7(1):16. doi: 10.3390/CHEMOSENSORS7010016
  • Wei Q, Zhang P, Liu T, et al. A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection. Food Chem. 2021;356:129668. doi: 10.1016/J.FOODCHEM.2021.129668
  • Wang L, He Y, Wu Z. Design of a blockchain-enabled traceability system framework for food supply chains. Foods. 2022;11(5):744. doi: 10.3390/foods11050744
  • Mustafa F, Othman A, Andreescu S. Cerium oxide-based hypoxanthine biosensor for fish spoilage monitoring. Sensors and Actuat B Chem. 2021;332:129435. doi: 10.1016/J.SNB.2021.129435
  • Yazdanparast S, Benvidi A, Abbasi S, et al. Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: a meat freshness marker. Microchem J. 2019;149:104000. doi: 10.1016/J.MICROC.2019.104000
  • Zheng S, Yang Q, Yang H, et al. An ultrasensitive and specific ratiometric electrochemical biosensor based on SRCA-CRISPR/Cas12a system for detection of salmonella in food. Food Control. 2022;146:109528. doi: 10.1016/J.FOODCONT.2022.109528
  • Dong Q, Yue X, Li S, et al. A novel rapid detection method for salmonella based on NMR macromolecular Gd biosensor. LWT. 2022;171:114138. doi: 10.1016/J.LWT.2022.114138
  • Sun D, Fan T, Liu F, et al. A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E. coli O157:H7. Biosens Bioelectron. 2022b;212:114390. doi: 10.1016/J.BIOS.2022.114390
  • Zhou Y, Li Z, Huang J, et al. Development of a phage-based electrochemical biosensor for detection of Escherichia coli O157: H7 GXEC-N07. Bioelectrochemistry. 2022a;150:108345. doi: 10.1016/J.BIOELECHEM.2022.108345
  • Ramić D, Klančnik A, Možina SS, et al. Elucidation of the AI-2 communication system in the food-borne pathogen campylobacter jejuni by whole-cell-based biosensor quantification. Biosens Bioelectron. 2022;212:114439. doi: 10.1016/J.BIOS.2022.114439
  • Vizzini P, Manzano M, Farre C, et al. Highly sensitive detection of campylobacter spp. In chicken meat using a silica nanoparticle enhanced dot blot DNA biosensor. Biosens Bioelectron. 2020;171:112689. doi: 10.1016/J.BIOS.2020.112689
  • Guo J, Liu D, Yang Z, et al. A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection. Bioelectrochemistry. 2020;136:107591. doi: 10.1016/J.BIOELECHEM.2020.107591
  • Baek SH, Kim MW, Park CY, et al. Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides. Biosens Bioelectron. 2018;123:223–229. doi: 10.1016/J.BIOS.2018.08.064
  • Jiang H, Sun Z, Zhang C, et al. 3D-architectured aptasensor for ultrasensitive electrochemical detection of norovirus based on phosphorene-gold nanocomposites. Sensors And Actuat B Chem. 2021;354:131232. doi: 10.1016/J.SNB.2021.131232
  • Shkembi X, Svobodova M, Skouridou V, et al. Aptasensors for mycotoxin detection: a review. Anal Biochem. 2022;644:114156. doi: 10.1016/J.AB.2021.114156
  • Jia Y, Zhao S, Li D, et al. Portable chemiluminescence optical fiber aptamer-based biosensors for analysis of multiple mycotoxins. Food Control. 2022;144:109361.
  • Zangheri M, di Nardo F, Calabria D, et al. Smartphone biosensor for point-of-need chemiluminescence detection of ochratoxin a in wine and coffee. Anal Chim Acta. 2021;1163:338515. doi: 10.1016/J.ACA.2021.338515
  • Zhu W, Li L, Zhou Z, et al. A colorimetric biosensor for simultaneous ochratoxin a and aflatoxins B1 detection in agricultural products. Food Chem. 2020;319:126544. doi: 10.1016/J.FOODCHEM.2020.126544
  • Li X, Jia M, Yu L, et al. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chem. 2022;402:134239. doi: 10.1016/J.FOODCHEM.2022.134239
  • Tian L, Zhang J, Fan H, et al. High efficient electrochemical biosensor based on exonuclease-III-assisted dual-recycling amplification for ultrasensitive detection of kanamycin. Anal Biochem. 2023;663:115028. doi: 10.1016/J.AB.2022.115028
  • Tang Y, Huang X, Wang X, et al. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem. 2021;366:130560. doi: 10.1016/J.FOODCHEM.2021.130560
  • Ahmad F, Zhu D, Sun J. Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environmental Sciences Europe. 2021;33(1):64. doi: 10.1186/s12302-021-00505-y
  • Xu D, Shen Z, Wang G, et al. Dual-catalytic colorimetric biosensor based on double-active Fe@Co-N stellate porous carbon and DNAzyme for simultaneous detection of tetracycline antibiotics. Sensors And Actuat B Chem. 2022;376:133024. doi: 10.1016/J.SNB.2022.133024
  • Yadav AK, Verma D, Lakshmi GBVS, et al. Fabrication of label-free and ultrasensitive electrochemical immunosensor based on molybdenum disulfide nanoparticles modified disposable ITO: an analytical platform for antibiotic detection in food samples. Food Chem. 2021;363:130245. doi: 10.1016/J.FOODCHEM.2021.130245
  • Li M, He B. Ultrasensitive sandwich-type electrochemical biosensor based on octahedral gold nanoparticles modified poly (ethylenimine) functionalized graphitic carbon nitride nanosheets for the determination of sulfamethazine. Sensors and Actuat B Chem. 2021;329:129158. doi: 10.1016/J.SNB.2020.129158
  • Fatunsin OT, Oyeyiola AO, Moshood MO, et al. Dietary risk assessment of organophosphate and carbamate pesticide residues in commonly eaten food crops. Sci African. 2020;8:e00442. doi: 10.1016/j.sciaf.2020.e00442
  • Mishra A, Kumar J, Melo JS, et al. Progressive development in biosensors for detection of dichlorvos pesticide: a review. J Environ Chem Eng. 2021;9(2):105067. doi: 10.1016/J.JECE.2021.105067
  • Jain U, Saxena K, Hooda V, et al. Emerging vistas on pesticides detection based on electrochemical biosensors – An update. Food Chem. 2021;371:131126. doi: 10.1016/J.FOODCHEM.2021.131126
  • Karadurmus L, Kaya SI, Ozkan SA. Recent advances of enzyme biosensors for pesticide detection in foods. J Food Meas Charact. 2021;15(5):4582–4595. doi: 10.1007/s11694-021-01032-3
  • Umar AM, Aisami A. Acetylcholinesterase enzyme (AChE) as a biosensor and biomarker for pesticides: a mini review. Bull Environ Sci And Sustain Manag (E-ISSN 2716-5353). 2020;4(1):7–12. doi: 10.54987/BESSM.V4I1.526
  • Fallatah A, Kuperus N, Almomtan M, et al. Sensitive biosensor based on shape-controlled ZnO nanostructures grown on flexible porous substrate for pesticide detection. Sensors. 2022;22(9):3522. doi: 10.3390/S22093522
  • Xie X, Zhou B, Zhang Y, et al. A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chem Phys Lett. 2021;767:138355. doi: 10.1016/J.CPLETT.2021.138355
  • Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosens Bioelectron. 2021;199:113906. doi: 10.1016/J.BIOS.2021.113906
  • Rafaqat S, Raqba AN, Hussain A. Validating role of different enzymes (laccases and catalases) based voltammetric biosensors in detection of pesticide and dye. Materials Chemistry & Physics. 2022;290:126545. doi: 10.1016/J.MATCHEMPHYS.2022.126545
  • Gamella M, Laza A, Parrón-Ballesteros J, et al. First PCR-free electrochemical bioplatform for the detection of mustard sin a 1 protein as a potential “hidden” food allergen. Bioelectrochemistry. 2022;150:108357. doi: 10.1016/J.BIOELECHEM.2022.108357
  • Chinnappan R, Rahamn AA, AlZabn R, et al. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chem. 2020;314:126133. doi: 10.1016/J.FOODCHEM.2019.126133
  • Jeong JY, Kim SO, Bang S, et al. Adaptive biosensing platform using immune cell-based nanovesicles for food allergen detection. Biosens Bioelectron. 2022;222:114914. doi: 10.1016/j.bios.2022.114914
  • Zhang Y, Lin T, Shen Y, et al. A high-performance self-supporting electrochemical biosensor to detect aflatoxin B1. Biosensors (Basel). 2022;12(10):897. doi: 10.3390/bios12100897
  • Pohanka M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Sci Citation Index Expanded and In J Citation Rep/Sci Edition Bratisl Med J. 2019;120(6):397–409. 120(6. doi: 10.4149/BLL_2019_065
  • Žunar B, Mosrin C, Bénédetti H, et al. Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper. Biosens Bioelectron. 2022;214:114502. doi: 10.1016/J.BIOS.2022.114502
  • Vasconcelos H, Matias A, Mendes J, et al. Compact biosensor system for the quantification of hydrogen peroxide in milk. Talanta. 2022;253:124062. doi: 10.1016/J.TALANTA.2022.124062
  • Manjunatha JG. A novel voltammetric method for the enhanced detection of the food additive tartrazine using an electrochemical sensor. Heliyon. 2018;4(11):e00986. doi: 10.1016/J.HELIYON.2018.E00986
  • Hao S, Sun X, Zhang H, et al. Recent development of biofuel cell based self-powered biosensors. J Mat Chem B. 2020;8(16):3393–3407. doi: 10.1039/C9TB02428J
  • Wan Y, Wang H, Zhang L, et al. Highly stable acetylcholinesterase electrochemical biosensor based on polymerized ionic liquids microgel for pesticides detection. Mikrochim Acta. 2022;189(8):300. doi: 10.1007/s00604-022-05383-6
  • Zheng H, Liu M, Yan Z, et al. Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem J. 2020;152:104266. doi: 10.1016/j.microc.2019.104266
  • Sonu, Chaudhary V. A paradigm of internet-of-nano-things inspired intelligent plant pathogen-diagnostic biosensors. ECS Sensors Plus. 2022;1(3):031401. doi: 10.1149/2754-2726/AC92ED
  • Huang CW, Lin C, Nguyen MK, et al. A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals. Bioengineered. 2023;14(1):58–80. doi: 10.1080/21655979.2022.2095089
  • Antonacci A, Scognamiglio V. Biotechnological advances in the design of algae-based biosensors. Trends Biotechnol. 2020;38(3):334–347. doi: 10.1016/j.tibtech.2019.10.005
  • Abdelbasset WK, Savina SV, Mavaluru D, et al. Smartphone based aptasensors as intelligent biodevice for food contamination detection in food and soil samples: recent advances. Talanta. 2023;252:123769. doi: 10.1016/J.TALANTA.2022.123769
  • Xie Y, Lu L, Gao F, et al. Integration of artificial intelligence, blockchain, and wearable technology for chronic disease management: a new paradigm in smart healthcare. Curr Med Sci. 2021;41(6):1123–1133. doi: 10.1007/s11596-021-2485-0