1,257
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The cadmium tolerance and bioaccumulation mechanism of Tetratostichococcus sp. P1: insight from transcriptomics analysis

, , , , , , , , , & ORCID Icon show all
Article: 2314888 | Received 16 Dec 2023, Accepted 01 Feb 2024, Published online: 20 Feb 2024

References

  • Baby J, Raj J, Biby E, et al. Toxic effect of heavy metals on aquatic environment. Int J Biol Chem Sci. 2010;4(4):939–16. doi: 10.4314/ijbcs.v4i4.62976
  • Zakhama S, Dhaouadi H, M’Henni F. Nonlinear modelisation of heavy metal removal from aqueous solution using ulva lactuca algae. Bioresour Technol. 2011;102(2):786–796. doi: 10.1016/j.biortech.2010.08.107
  • Leong YK, Chang JS. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol. 2020;303:122886. doi: 10.1016/j.biortech.2020.122886
  • Qi K, Ren L, Bai Z, et al. Detecting cadmium during ultrastructural characterization of hepatotoxicity. J Trace Elem Med Biol. 2020;62:126644. doi: 10.1016/j.jtemb.2020.126644
  • Yu Z, Wei H, Hao R, et al. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations. Environ Sci Process Impacts. 2018;20(6):923–933. doi: 10.1039/c8em00106e
  • Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO. Heavy metal detoxification in eukaryotic microalgae. Chemosphere. 2006;64(1):1–10. doi: 10.1016/j.chemosphere.2005.11.024
  • Monteiro CM, Castro PML, Malcata FX. Cadmium Removal by Two Strains of Desmodesmus pleiomorphus Cells. Water Air Soil Pollut. 2010;208(1–4):17–27. doi: 10.1007/s11270-009-0146-1
  • Chandrashekharaiah PS, Sanyal D, Dasgupta S, et al. Cadmium biosorption and biomass production by two freshwater microalgae scenedesmus acutus and chlorella pyrenoidosa: an integrated approach. Chemosphere. 2021;269:128755. doi: 10.1016/j.chemosphere.2020.128755
  • Kumar KS, Dahms HU, Won EJ, et al. Microalgae - a promising tool for heavy metal remediation. Ecotoxicol Environ Saf. 2015;113:329–352. doi: 10.1016/j.ecoenv.2014.12.019
  • Zhu Q, Zhang M, Bao J, et al. Physiological, metabolomic, and transcriptomic analyses reveal the dynamic redox homeostasis upon extended exposure of Dunaliella salina GY-H13 cells to Cd. Ecotoxicol Environ Saf. 2021;223:112593. doi: 10.1016/j.ecoenv.2021.112593
  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, Perera IA, Megharaj M. Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5. Bioresour Technol. 2020;281:469–473. doi: 10.1016/j.biortech.2019.03.001
  • Subashchandrabose SR, Megharaj M, Venkateswarlu K, et al. Interaction effects of polycyclic aromatic hydrocarbons and heavy metals on a soil microalga, Chlorococcum sp. MM11. Environ Sci Pollut Res. 2015;22(12):8876–8889. doi: 10.1007/s11356-013-1679-9
  • Birungi ZS, Chirwa EMN. Interpretation of uptake kinetic of thallium and cadmium on surfaces of immobilized green algae as biosorbents. Chem Eng Trans. 2016;49:421–426. doi: 10.3303/CET1649071
  • Skowroński T. Uptake of cadmium by Stichococcus bacillaris. Chemosphere. 1984;13(12):1385–1389. doi: 10.1016/0045-6535(84)90052-3
  • Sahabudin E, Lee J, Asada R, et al. Isolation and characterization of acid-tolerant stichococcus-like microalga (Tetratostichococcus sp. P1) from a tropical peatland in Malaysia. J Appl Phycol. 2022a;34(4):1881–1892. doi: 10.1007/s10811-022-02762-7
  • Sahabudin E, Othman NA, Suzuki I. High cadmium tolerance in stichoccocus-like microalgae (Tetratostichoccocus sp. P1) from Malaysia. IOP Conf Ser Earth Environ Sci. 2022b;1091(1):012045. doi: 10.1088/1755-1315/1091/1/012045
  • Tripathi S, Arora N, Gupta P, et al. Microalgae: an emerging source for mitigation of heavy metals and their potential implications for biodiesel production, advanced biofuels: applications, technologies and environmental sustainability. Elsevier Ltd; 2019. doi: 10.1016/B978-0-08-102791-2.00004-0
  • Priyadarshini E, Priyadarshini SS, Pradhan N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl Microbiol Biotechnol. 2019;103(8):3297–3316. doi: 10.1007/s00253-019-09685-3
  • Tripathi S, Poluri KM. Heavy metal detoxification mechanisms by microalgae: insights from transcriptomics analysis. Environ Pollut. 2021;285:117443. doi: 10.1016/j.envpol.2021.117443
  • Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport. Biochim Biophys Acta, Mol Cell Res. 2012;1823(9):1531–1552. doi: 10.1016/j.bbamcr.2012.04.010
  • Lu JJ, Ma YL, Xing GL, et al. Revelation of microalgae’s lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses. Environ Pollut. 2019;250:186–195. doi: 10.1016/j.envpol.2019.04.018
  • Balzano S, Sardo A, Blasio M, et al. Microalgal metallothioneins and phytochelatins and their potential use in bioremediation. Front Microbiol. 2020;11:1–16. doi: 10.3389/fmicb.2020.00517
  • Ding N, Wang L, Kang Y, et al. The comparison of transcriptomic response of green microalga chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) and 4-n-nonylphenol. Environ Geochem Health. 2020;42(9):2881–2894. doi: 10.1007/s10653-020-00526-1
  • Liao Y, Jiang X, Xiao Y, et al. Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: perspective from the physiological and transcriptional responses. Aquatic Toxicol. 2020;228:105650. doi: 10.1016/j.aquatox.2020.105650
  • Abinandan S, Subashchandrabose SR, Pannerselvan L, et al. Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Bioresour Technol. 2019;278:9–16. doi: 10.1016/j.biortech.2019.01.053
  • Rashid MH, Fardous Z, Chowdhury MA, et al. Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods. Chem Cent J. 2016;10(1):7. doi: 10.1186/s13065-016-0154-3
  • Jayakumar V, Govindaradjane S, Senthil Kumar P, et al. Sustainable removal of cadmium from contaminated water using green alga – optimization, characterization and modeling studies. Environ Res. 2021;199:111364. doi: 10.1016/j.envres.2021.111364
  • Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–9445. doi: 10.1073/pnas.1530509100
  • Wagner H, Liu Z, Langner U, et al. The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. J Biophoto. 2010;3(8–9):557–566. doi: 10.1002/jbio.201000019
  • Nanda M, Jaiswal KK, Kumar V, et al. Bio-remediation capacity for Cd(II) and Pb(II) from the aqueous medium by two novel strains of microalgae and their effect on lipidomics and metabolomics. Water Proc Eng. 2021;44:102404. doi: 10.1016/j.jwpe.2021.102404
  • Fathi A. Effects of Ph on toxicity of cadmium, cobalt and copper to the green alga Scenedesmus bijuga. Egyptian J Phycol. 2004;5(1):107–117. doi: 10.21608/egyjs.2004.113991
  • Xu Y, Shi D, Aristilde L, et al. The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: possible role of weak complexes. Limnol Oceanogr. 2012;57(1):293–304. doi: 10.4319/lo.2012.57.1.0293
  • Díaz S, de Francisco P, Olsson S, et al. Toxicity, physiological, and ultrastructural effects of arsenic and cadmium on the extremophilic microalga Chlamydomonas acidophila. Int J Environ Res Public Health. 2020;17(5):1650. doi: 10.3390/ijerph17051650
  • Skowroński T, Szubiflska S, Pawlik B, et al. The influence of pH on cadmium toxicity to the green alga Stichococcus bacillaris and on the cadmium forms present in the culture medium. Environ Pollut. 1991;74(2):89–100. doi: 10.1016/0269-7491(91)90106-7
  • Sbihi K, Cherifi O, El Gharmali A, et al. Toxicity and biosorption of chromium from aqueous solutions by the diatom Planothidium lanceolatum (brébisson) lange-bertalot. J Mater Environ Sci. 2012;3(1):27–38. doi: 10.5251/ajsir.2012.3.1.27.38
  • Hanikenne M, Krämer U, Demoulin V, et al. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol. 2005;137(2):428–446. doi: 10.1104/pp.104.054189
  • Lamai C, Kruatrachue M, Pokethitiyook P, et al. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (O.F. Muller ex vahl) Kutzing: a laboratory study. Science Asia. 2005;31(2):121–127. doi: 10.2306/scienceasia1513-1874.2005.31.121
  • León-Vaz A, Romero LC, Gotor C, et al. Effect of cadmium in the microalga Chlorella sorokiniana: a proteomic study. Ecotoxicol Environ Saf. 2021;207:111301. doi: 10.1016/j.ecoenv.2020.111301
  • Carfagna S, Lanza N, Salbitani G, et al. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (chlorophyceae). Springerplus. 2013;2(1):1–7. doi: 10.1186/2193-1801-2-147
  • Cobbett CS. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 2000;123(3):825–832. doi: 10.1104/pp.123.3.825
  • Wang S, Zhang D, Pan X. Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow. Chemosphere. 2013;93(2):230–237. doi: 10.1016/j.chemosphere.2013.04.070
  • Mao Y, Ai H, Chen Y, et al. Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere. 2018;208:59–68. doi: 10.1016/j.chemosphere.2018.05.170
  • Santiago-Martínez MG, Lira-Silva E, Encalada R, et al. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions. J Hazard Mater. 2015;288:104–112. doi: 10.1016/j.jhazmat.2015.02.027
  • Chia MA, Lombardi AT, da Melão MGG, et al. Phosphorus levels determine changes in growth and biochemical composition of Chlorella vulgaris during cadmium stress. J Appl Phycol. 2017;29(4):1883–1891. doi: 10.1007/s10811-017-1111-9
  • Pokora W, Baścik-Remisiewicz A, Tukaj S, et al. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: a study with light-induced synchronized cultures of algae. J Plant Physiol. 2014;171(2):69–77. doi: 10.1016/j.jplph.2013.10.006
  • Mitra M, Kirst H, Dewez D, et al. Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference. Philos Trans R Soc B. 2012;367(1608):3430–3443. doi: 10.1098/rstb.2012.0229
  • Singh S, Kumar V. Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study. Environ Sci Pollut Res. 2020;27(22):27181–27201. doi: 10.1007/s11356-019-04974-w
  • Ziller A, Fraissinet-Tachet L. Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics. 2018;10(11):1549–1559. doi: 10.1039/c8mt00165k
  • Capdevila M, Atrian S. Metallothionein protein evolution: a miniassay. J Biol Inorg Chem. 2011;16(7):977–989. doi: https://doi.org/10.1007/s00775-011-0798-3
  • Olsson S, Penacho V, Puente-Sánchez F, et al. Horizontal gene transfer of phytochelatin synthases from bacteria to extremophilic green algae. Microb Ecol. 2017;73(1):50–60. doi: 10.1007/s00248-016-0848-z
  • Puente-Sánchez F, Díaz S, Penacho V, et al. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila. Aquatic Toxicol. 2018;200:62–72. doi: 10.1016/j.aquatox.2018.04.020
  • Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal. 2001;3(4):625–634. doi: 10.1089/15230860152542970
  • Ebersbach G, Galli E, Møller-Jensen J, et al. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol Microbiol. 2008;68(3):720–735. doi: 10.1111/j.1365-2958.2008.06190.x
  • Volland S, Bayer E, Baumgartner V, et al. Rescue of heavy metal effects on cell physiology of the algal model system micrasterias by divalent ions. J Plant Physiol. 2014;171(2):154–163. doi: 10.1016/j.jplph.2013.10.002
  • Gai WX, Ma X, Qiao YM, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Front Plant Sci. 2020;11:1–18. doi: 10.3389/fpls.2020.00139
  • Han Y, Hou Z, He Q, et al. Genome-wide characterization and expression analysis of bZIP gene family under abiotic stress in Glycyrrhiza uralensis. Front Genet. 2021;12:1–17. doi: 10.3389/fgene.2021.754237
  • Ji C, Mao X, Hao J, et al. Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. Int J Mol Sci. 2018;19(9):2800. doi: 10.3390/ijms19092800
  • Bai F, Zhang Y, Liu J. A bZIP transcription factor is involved in regulating lipid and pigment metabolisms in the green alga Chlamydomonas reinhardtii. Algal Res. 2021;59:102450. doi: 10.1016/j.algal.2021.102450
  • Puente-Sánchez F, Olsson S, Aguilera A. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures. Microb Ecol. 2016;72(3):595–607. doi: 10.1007/s00248-016-0824-7
  • Zheng C, Aslam M, Liu X, et al. Impact of Pb on chlamydomonas reinhardtii at physiological and transcriptional levels. Front Microbiol. 2020;11:1443. doi: 10.3389/fmicb.2020.01443
  • Mullineaux PM, Exposito-Rodriguez M, Laissue PP, et al. ROS-dependent signalling pathways in plants and algae exposed to high light: comparisons with other eukaryotes. Free Radic Biol Med. 2018;122:52–64. doi: 10.1016/j.freeradbiomed.2018.01.033