3,658
Views
10
CrossRef citations to date
0
Altmetric
Addendum

Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation

&
Article: e1128616 | Received 13 Jul 2015, Accepted 01 Dec 2015, Published online: 18 Feb 2016

References

  • Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, Cangul H, Coryell J, Canham N, Nardocci N, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006; 38:752-4; PMID:16783378; http://dx.doi.org/10.1038/ng1826
  • Khateeb S, Flusser H, Ofir R, Shelef I, Narkis G, Vardi G, Shorer Z, Levy R, Galil A, Elbedour K, et al. PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 2006; 79:942-8; PMID:17033970; http://dx.doi.org/10.1086/508572
  • Gregory A, Westaway SK, Holm IE, Kotzbauer PT, Hogarth P, Sonek S, Coryell JC, Nguyen TM, Nardocci N, Zorzi G, et al. Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology 2008; 71:1402-9; PMID:18799783; http://dx.doi.org/10.1212/01.wnl.0000327094.67726.28
  • Winstead MV1, Balsinde J, Dennis EA. Calcium-independent phospholipase A(2): structure and function. Biochim Biophys Acta 2000; 1488:28-39; PMID:11080674; http://dx.doi.org/10.1016/S1388-1981(00)00107-4
  • Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Ther 2009; 23:49-59; PMID:18931897; http://dx.doi.org/10.1007/s10557-008-6132-9
  • Ong WY, Yeo JF, Ling SF, Farooqui AA. Distribution of calcium-independent phospholipase A2 (iPLA 2) in monkey brain. J Neurocytol 2005; 34:447-58; PMID:16902765; http://dx.doi.org/10.1007/s11068-006-8730-4
  • Williams, SD and Gottlieb, RA. Inhibition of mitochondrial calcium-independent phospholipase A(2) (iPLA(2)) attenuates mitochondrial phospholipid loss and is cardioprotective. J Biochem 2002; 362:23-32; http://dx.doi.org/10.1042/bj3620023
  • Seleznev K, Zhao C, Zhang XH, Song K, Ma ZA. Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. J Biol Chem 2006; 281:22275-88; PMID:16728389; http://dx.doi.org/10.1074/jbc.M604330200
  • Song H1, Bao S, Lei X, Jin C, Zhang S, Turk J, Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA(2)β. Biochim Biophys Acta 2010; 1801:547-58; PMID:20132906; http://dx.doi.org/10.1016/j.bbalip.2010.01.006
  • Balsinde J, Balboa MA. Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells. Cell Signal 2005; 17:1052-62; PMID:15993747; http://dx.doi.org/10.1016/j.cellsig.2005.03.002
  • Wang Z, Ramanadham S, Ma ZA, Bao S, Mancuso DJ, Gross RW, Turk J. Group VIA phospholipase A2 forms a signaling complex with the calcium/calmodulin-dependent protein kinase IIbeta expressed in pancreatic islet β-cells. J Biol Chem 2005; 280:6840-9; PMID:15576376; http://dx.doi.org/10.1074/jbc.M405287200
  • Balsinde J1, Bianco ID, Ackermann EJ, Conde-Frieboes K, Dennis EA. Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc Natl Acad Sci U S A 1995; 92:8527-31; PMID:7667324; http://dx.doi.org/10.1073/pnas.92.18.8527
  • Yang HC1, Mosior M, Johnson CA, Chen Y, Dennis EA. Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem. 1999; 269:278-88; PMID:10221999; http://dx.doi.org/10.1006/abio.1999.4053
  • Balboa MA1, Balsinde J. Involvement of calcium-independent phospholipase A2 in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells. J Biol Chem 2002; 277:40384-9; PMID:12181317; http://dx.doi.org/10.1074/jbc.M206155200
  • Shindou H1, Hishikawa D, Harayama T, Eto M, Shimizu T. Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem 2013; 154:21-8; PMID:23698096; http://dx.doi.org/10.1093/jb/mvt048
  • Glynn P. Neuronal phospholipid deacylation is essential for axonal and synaptic integrity. Biochim Biophys Acta 2013; 1831:633-41; PMID:22903185; http://dx.doi.org/10.1016/j.bbalip.2012.07.023
  • Balboa MA, Pérez R, Balsinde J. Calcium-independent phospholipase A2 mediates proliferation of human promonocytic U937 cells. FEBS J 2008; 275:1915-24; PMID:18336573; http://dx.doi.org/10.1111/j.1742-4658.2008.06350.x
  • Pérez R, Melero R, Balboa MA, Balsinde J. Role of group VIA calcium-independent phospholipase A2 in arachidonic acid release, phospholipid fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen peroxide. J Biol Chem 2004; 279:40385-91; http://dx.doi.org/10.1074/jbc.M402562200
  • Malaguti MC, Melzi V, Di Giacopo R, Monfrini E, Di Biase E, Franco G, Borellini L, Trezzi I, Monzio Compagnoni G, Fortis P, et al. A novel homozygous PLA2G6 mutation causes dystonia-parkinsonism. Parkinsonism Relat Disord 2015; 21:337-9; PMID:25601130; http://dx.doi.org/10.1016/j.parkreldis.2015.01.001
  • Xu C, Warsh JJ, Wang KS, Mao CX, Kennedy JL. Association of the iPLA2β gene with bipolar disorder and assessment of its interaction with TRPM2 gene polymorphisms. Psychiatr Genet 2013; 23:86-9; PMID:23277130; http://dx.doi.org/10.1097/YPG.0b013e32835d700d
  • Ning LF, Yu YQ, GuoJi ET, Kou CG, Wu YH, Shi JP, Ai LZ, Yu Q. Meta-analysis of differentially expressed genes in autism based on gene expression data. Genet Mol Res 2015; 14:2146-55; PMID:25867362; http://dx.doi.org/10.4238/2015.March.27.1
  • Zhang P, Gao Z, Jiang Y, Wang J, Zhang F, Wang S, Yang Y, Xiong H, Zhang Y, Bao X, et al. Follow-up study of 25 Chinese children with PLA2G6-associated neurodegeneration. Eur J Neurol 2013; 20:322-30; PMID:22934738; http://dx.doi.org/10.1111/j.1468-1331.2012.03856.x
  • Nardocci N, Zorzi G, Farina L, Binelli S, Scaioli W, Ciano C, Verga L, Angelini L, Savoiardo M, Bugiani O. Infantile neuroaxonal dystrophy: clinical spectrum and diagnostic criteria. Neurology 1999; 52:1472-8; PMID:10227637; http://dx.doi.org/10.1212/WNL.52.7.1472
  • Riku Y, Ikeuchi T, Yoshino H, Mimuro M, Mano K, Goto Y, Hattori N, Sobue G, Yoshida M. Extensive aggregation of α-synuclein and tau in juvenile-onset neuroaxonal dystrophy: an autopsied individual with a novel mutation in the PLA2G6 gene-splicing site. Acta Neuropathol Commun 2013; 1:12; PMID:24252552; http://dx.doi.org/10.1186/2051-5960-1-12
  • Biancheri R, Rossi A, Alpigiani G, Filocamo M, Gandolfo C, Lorini R, Minetti C. Cerebellar atrophy without cerebellar cortex hyperintensity in infantile neuroaxonal dystrophy (INAD) due to PLA2G6 mutation. Eur J Paediatr Neurol 2007; 11:175-7; PMID:17254819; http://dx.doi.org/10.1016/j.ejpn.2006.11.013
  • Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, Philip SG, Hendriksz C, Morton JE, Kingston HM, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008; 70:1623-9; PMID:18443314; http://dx.doi.org/10.1212/01.wnl.0000310986.48286.8e
  • Arber CE, Li A, Houlden H, Wray S. Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 2015; PMID:25870938; http://dx.doi.org/10.1111/nan.12242
  • Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, Hardy J, Houlden H, Singleton A, Schneider SA. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 2009; 65:19-23; PMID:18570303; http://dx.doi.org/10.1002/ana.21415
  • Shi CH, Tang BS, Wang L, Lv ZY, Wang J, Luo LZ, Shen L, Jiang H, Yan XX, Pan Q, et al. PLA2G6 gene mutation in autosomal recessive early-onset parkinsonism in a Chinese cohort. Neurology 2011; 77:75-81; PMID:21700586; http://dx.doi.org/10.1212/WNL.0b013e318221acd3
  • Lu CS1, Lai SC, Wu RM, Weng YH, Huang CL, Chen RS, Chang HC, Wu-Chou YH, Yeh TH. PLA2G6 mutations in PARK14-linked young-onset parkinsonism and sporadic Parkinson disease. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:183-91; PMID:22213678; http://dx.doi.org/10.1002/ajmg.b.32012
  • Xie F, Cen Z, Ouyang Z, Wu S, Xiao J, Luo W. Homozygous p.D331Y mutation in PLA2G6 in two patients with pure autosomal-recessive early-onset parkinsonism: further evidence of a fourth phenotype of PLA2G6-associated neurodegeneration. Parkinsonism Relat Disord 2015; 21:420-2; PMID:25660576; http://dx.doi.org/10.1016/j.parkreldis.2015.01.012
  • Kimura T, Fujise N, Ono T, Shono M, Yuzuriha T, Katsuragi S, Takamatsu J, Miyakawa T, Kitamura T. Identification of an aging-related spherical inclusion in the human brain. Pathol Int 2002; 52:636-42; PMID:12445135; http://dx.doi.org/10.1046/j.1440-1827.2002.01402.x
  • Malik I, Turk J, Mancuso DJ, Montier L, Wohltmann M, Wozniak DF, Schmidt RE, Gross RW, Kotzbauer PT. Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. Am J Pathol 2008; 172:406-16; PMID:18202189; http://dx.doi.org/10.2353/ajpath.2008.070823
  • Paisán-Ruiz C, Li A, Schneider S, Holton JL, Johnson R, Kidd D, Chataway J, Bhatia KP, Lees AJ, Hardy J, et al. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2012; 33:814-823; http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.009
  • Beck G, Sugiura Y, Shinzawa K, Kato S, Setou M, Tsujimoto Y, Sakoda S, Sumi-Akamaru H. Neuroaxonal dystrophy in calcium-independent phospholipase A2β deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes. J Neurosci 2011; 31:11411-20; PMID:21813701; http://dx.doi.org/10.1523/JNEUROSCI.0345-11.2011
  • Engel LA, Jing Z, O'Brien DE, Sun M, Kotzbauer PT. Catalytic function of PLA2G6 is impaired by mutations associated with infantile neuroaxonal dystrophy but not dystonia-parkinsonism. PLoS One 2010; 5:e12897; PMID:20886109; http://dx.doi.org/10.1371/journal.pone.0012897
  • Gui YX, Xu ZP, Wen-Lv, Liu HM, Zhao JJ, Hu XY. Four novel rare mutations of PLA2G6 in Chinese population with Parkinson disease. Parkinsonism Relat Disord 2013; 19:21-6; PMID:23182313; http://dx.doi.org/10.1016/j.parkreldis.2012.07.016
  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 2004; 37:1963-85; PMID:15544916; http://dx.doi.org/10.1016/j.freeradbiomed.2004.08.016
  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 2005; 1:223-32; PMID:16408039; http://dx.doi.org/10.1038/nchembio727
  • Wada H1, Yasuda T, Miura I, Watabe K, Sawa C, Kamijuku H, Kojo S, Taniguchi M, Nishino I, Wakana S, Yoshida H, et al. Establishment of an improved mouse model for infantile neuroaxonal dystrophy that shows early disease onset and bears a point mutation in Pla2g6. Am J Pathol 2009; 175:2257-63; PMID:19893029; http://dx.doi.org/10.2353/ajpath.2009.090343
  • Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, Greenstein D, Wohltmann M, Turk J, Rapoport SI, et al. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A(2)-VIA (iPLA(2)β)-knockout mice. Biochim Biophys Acta 2012; 1821:1278-86; PMID:22349267; http://dx.doi.org/10.1016/j.bbalip.2012.02.003
  • Strokin M, Seburn KL, Cox GA, Martens KA, Reiser G. Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6. Hum Mol Genet 2012; 21:2807-14; PMID:22442204; http://dx.doi.org/10.1093/hmg/dds108
  • Zhao Z, Wang J, Zhao C, Bi W, Yue Z, Ma ZA. Genetic ablation of PLA2G6 in mice leads to cerebellar atrophy characterized by Purkinje cell loss and glial cell activation. PLoS One 2011; 6:e26991; PMID:22046428; http://dx.doi.org/10.1371/journal.pone.0026991
  • Shinzawa K, Sumi H, Ikawa M, Matsuoka Y, Okabe M, Sakoda S, Tsujimoto Y. Neuroaxonal dystrophy caused by group VIA phospholipase A2 deficiency in mice: a model of human neurodegenerative disease. J Neurosci 2008; 28:2212-20; PMID:18305254; http://dx.doi.org/10.1523/JNEUROSCI.4354-07.2008
  • Kinghorn KJ, Castillo-Quan JI, Bartolome F, Angelova PR, Li L, Pope S, Cochemé HM, Khan S, Asghari S, Bhatia KP, et al. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain 2015; 138:1801-16; PMID:26001724; http://dx.doi.org/10.1093/brain/awv132
  • Schlame M. Cardiolipin remodeling and the function of tafazzin. Biochim Biophys Acta 2013; 1831:582-8; PMID:23200781; http://dx.doi.org/10.1016/j.bbalip.2012.11.007
  • Hill S, Hirano K, Shmanai VV, Marbois BN, Vidovic D, Bekish AV, Kay B, Tse V, Fine J, Clarke CF, et al. Isotope-reinforced polyunsaturated fatty acids protect yeast cells from oxidative stress. Free Radic Biol Med 2011; 50:130-8; PMID:20955788; http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.690
  • Hill S, Lamberson CR, Xu L, To R, Tsui HS, Shmanai VV, Bekish AV, Awad AM, Marbois BN, Cantor CR, et al. Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic Biol Med 2012; 53:893-906; PMID:22705367; http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.004
  • Shchepinov MS, Chou VP, Pollock E, Langston JW, Cantor CR, Molinari RJ, Manning-Boğ AB. Isotopic reinforcement of essential polyunsaturated fatty acids diminishes nigrostriatal degeneration in a mouse model of Parkinson disease. Toxicol Lett 2011; 207:97-103; PMID:21906664; http://dx.doi.org/10.1016/j.toxlet.2011.07.020
  • Campanella A, Privitera D, Guaraldo M, Rovelli E, Barzaghi C, Garavaglia B, Santambrogio P, Cozzi A, Levi S. Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Hum Mol Genet 2012; 21:4049-59; PMID:22692681; http://dx.doi.org/10.1093/hmg/dds229
  • Brunetti D, Dusi S, Morbin M, Uggetti A, Moda F, D'Amato I, Giordano C, d'Amati G, Cozzi A, Levi S, et al. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet. 2012; 21(24):5294-305; PMID:22983956; http://dx.doi.org/10.1093/hmg/dds380
  • Hörtnagel K, Prokisch H, Meitinger T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum Mol Genet 2003; 12(3):321-7; PMID:12554685; http://dx.doi.org/10.1093/hmg/ddg026
  • Rock CO, Calder RB, Karim MA, Jackowski S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J Biol Chem 2000; 275:1377-83; PMID:10625688; http://dx.doi.org/10.1074/jbc.275.2.1377
  • Perry TL, Norman MG, Yong VW, Whiting S, Crichton JU, Hansen S, Kish SJ. Hallervorden-Spatz disease: cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Ann Neurol 1985; 18(4):482-9; PMID:4073841; http://dx.doi.org/10.1002/ana.410180411
  • Bosveld F, Rana A, van der Wouden PE, Lemstra W, Ritsema M, Kampinga HH, Sibon OC. De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system. Hum Mol Genet 2008; 17:2058-69; PMID:18407920; http://dx.doi.org/10.1093/hmg/ddn105
  • Rana A, Seinen E, Siudeja K, Muntendam R, Srinivasan B, van der Want JJ, Hayflick S, Reijngoud DJ, Kayser O, Sibon OC. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc Natl Acad Sci U S A 2010; 107:6988-93; PMID:20351285; http://dx.doi.org/10.1073/pnas.0912105107
  • Siudeja K, Srinivasan B, Xu L, Rana A, de Jong J, Nollen EA, Jackowski S, Sanford L, Hayflick S, Sibon OC. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration. EMBO Mol Med 2011; 3:755-66; PMID:21998097; http://dx.doi.org/10.1002/emmm.201100180
  • Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 1998; 39(8):1529-42; PMID:9717713
  • Massey AC, Kiffin R, Cuervo AM. Autophagic defects in aging: looking for an “emergency exit”? Cell Cycle 2006; 5(12):1292-6; PMID:16760669; http://dx.doi.org/10.4161/cc.5.12.2865
  • Zhyvoloup A, Nemazanyy I, Babich A, Panasyuk G, Pobigailo N, Vudmaska M, Naidenov V, Kukharenko O, Palchevskii S, Savinska L, et al. Molecular cloning of CoA Synthase. The missing link in CoA biosynthesis. J Biol Chem 2002; 277:22107-10; PMID:11980892; http://dx.doi.org/10.1074/jbc.C200195200
  • Nemazanyy I, Panasyuk G, Breus O, Zhyvoloup A, Filonenko V, Gout IT. Identification of a novel CoA synthase isoform, which is primarily expressed in the brain. Biochem Biophys Res Commun 2006; 341:995-1000; PMID:16460672; http://dx.doi.org/10.1016/j.bbrc.2006.01.051
  • Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, Goffrini P, Tigano M, Demchenko N, Wieland T, Schwarzmayr T, et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet 2014; 94:11-22; PMID:24360804; http://dx.doi.org/10.1016/j.ajhg.2013.11.008
  • Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr S.A, Ting AY. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013; 339:1328-1331; PMID:23371551; http://dx.doi.org/10.1126/science.1230593
  • Zhyvoloup A, Nemazanyy I, Panasyuk G, Valovka T, Fenton T, Rebholz H, Wang ML, Foxon R, Lyzogubov V, Usenko V, et al. Subcellular localization and regulation of coenzyme A synthase. J Biol Chem 2003; 278:50316-50321; PMID:14514684; http://dx.doi.org/10.1074/jbc.M307763200
  • Alfonso-Pecchio A, Garcia M, Leonardi R, Jackowski S. Compartmentalization of mammalian pantothenate kinases. PLoS One 2012; 7:e49509; PMID:23152917; http://dx.doi.org/10.1371/journal.pone.0049509
  • Leoni V, Strittmatter L, Zorzi G, Zibordi F, Dusi S, Garavaglia B, Venco P, Caccia C, Souza AL, Deik A, et al. Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol Genet Metab 2012; 105:463-71; PMID:22221393; http://dx.doi.org/10.1016/j.ymgme.2011.12.005
  • Hartig MB, Iuso A, Haack T, Kmiec T, Jurkiewicz E, Heim K, Roeber S, Tarabin V, Dusi S, Krajewska-Walasek M, et al. Absence of an orphan mitochondrial protein, C19orf12, causes a distinct clinical subtype of neuodegeneration with brain iron accumulation. Am J Hum Genet 2011; 89(4):543-50; http://dx.doi.org/10.1016/j.ajhg.2011.09.007
  • Gagliardi M, Annesi G, Lesca G, Broussolle E, Iannello G, Vaiti V, Gambardella A, Quattrone A. C19orf12 gene mutations in patients with neurodegeneration with brain iron accumulation. Parkinsonism Relat Disord 2015; 21:813-6; PMID:25962551; http://dx.doi.org/10.1016/j.parkreldis.2015.04.009
  • Kleffner I, Wessling C, Gess B, Korsukewitz C, Allkemper T, Schirmacher A, Young P, Senderek J, Husstedt IW. Behr syndrome with homozygous C19ORF12 mutation. J Neurol Sci 2015; 357:115-8; PMID:26187298; http://dx.doi.org/10.1016/j.jns.2015.07.009
  • Kruer MC, Salih MA, Mooney C, Alzahrani J, Elmalik SA, Kabiraj MM, Khan AO, Paudel R, Houlden H, Azzedine H, et al. C19orf12 mutation leads to a pallido-pyramidal syndrome. Gene 2014; 537:352-6; PMID:24361204; http://dx.doi.org/10.1016/j.gene.2013.11.039
  • Landouré G, Zhu PP, Lourenço CM, Johnson JO, Toro C, Bricceno KV, Rinaldi C, Meilleur KG, Sangaré M, Diallo O, et al. Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12. Hum Mutat 2013; 34:1357-60; PMID:Can't; http://dx.doi.org/10.1002/humu.22378
  • Hogarth P, Gregory A, Kruer MC, Sanford L, Wagoner W, Natowicz MR, Egel RT, Subramony SH, Goldman JG, Berry-Kravis E, et al. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 2013; 80:268-75; PMID:23269600; http://dx.doi.org/10.1212/WNL.0b013e31827e07be
  • Venco P, Bonora M, Giorgi C, Papaleo E, Iuso A, Prokisch H, Pinton P, Tiranti V. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2. Front Genet 2015; 6:185; PMID:26136767; http://dx.doi.org/10.3389/fgene.2015.00185
  • Iuso A, Sibon OC, Gorza M, Heim K, Organisti C, Meitinger T, Prokisch H. Impairment of Drosophila orthologs of the human orphan protein C19orf12 induces bang sensitivity and neurodegeneration. PLoS One 2014; 9:e89439; PMID:24586779; http://dx.doi.org/10.1371/journal.pone.0089439
  • Edvardson S, Hama H, Shaag A, Gomori JM, Berger I, Soffer D, Korman SH, Taustein I, Saada A, Elpeleg O. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet 2008; 83:643-8; PMID:19068277
  • Dick KJ, Eckhardt M, Paisán-Ruiz C, Alshehhi AA, Proukakis C, Sibtain NA, Maier H, Sharifi R, Patton MA, Bashir W, et al. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 2010; 31:E1251-60; PMID:20104589; http://dx.doi.org/10.1002/humu.21205
  • Kruer MC, Gregory A, Hayflick SJ. Fatty Acid Hydroxylase-Associated Neurodegeneration. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Smith RJH, Stephens K, editors. GeneReviews® Seattle (WA): University of Washington, Seattle; 1993-2015
  • Maldonado EN, Alderson NL, Monje PV, Wood PM, Hama H. FA2H is responsible for the formation of 2-hydroxy galactolipids in peripheral nervous system myelin. J Lipid Res 2008; 49:153-61; PMID:17901466; http://dx.doi.org/10.1194/jlr.M700400-JLR200
  • Eckhardt M, Yaghootfam A, Fewou SN, Zöller I, Gieselmann V. A mammalian fatty acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin. Biochem J 2005; 388:245-54; PMID:15658937; http://dx.doi.org/10.1042/BJ20041451
  • Fukunaga M, Li TQ, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, Aronova MA, Zhang G, et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 2010; 107:3834-9; PMID:20133720; http://dx.doi.org/10.1073/pnas.0911177107
  • Alderson NL, Hama H. Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in D6P2T schwannoma cells. J Lipid Res 2009; 50:1203-8; PMID:19171550 http://dx.doi.org/10.1194/jlr.M800666-JLR200
  • Kota V, Hama H. 2′-Hydroxy ceramide in membrane homeostasis and cell signaling. Adv Biol Regul 2014; 54:223-30; PMID:24139861; http://dx.doi.org/; http://dx.doi.org/10.1016/j.jbior.2013.09.012
  • Uchida Y, Hama H, Alderson NL, Douangpanya S, Wang Y, Crumrine DA, Elias PM, Holleran WM. Fatty acid 2-hydroxylase, encoded by FA2H, accounts for differentiation-associated increase in 2-OH ceramides during keratinocyte differentiation. J Biol Chem 2007; 282:13211-9; PMID:17355976; http://dx.doi.org/10.1074/jbc.M611562200
  • Bras J, Singleton A, Cookson MR, Hardy J. Emerging pathways in genetic Parkinson disease: Potential role of ceramide metabolism in Lewy body disease. FEBS J 2008; 275:5767-73; PMID:19021754; http://dx.doi.org/10.1111/j.1742-4658.2008.06709.x
  • Lei X, Zhang S, Bohrer A, Bao S, Song H, Ramanadham S. The group VIA calcium-independent phospholipase A2 participates in ER stress-induced INS-1 insulinoma cell apoptosis by promoting ceramide generation via hydrolysis of sphingomyelins by neutral sphingomyelinase. Biochemistry 2007; 46:10170-85; PMID:17685585; http://dx.doi.org/10.1021/bi700017z
  • Ben-David O, Futerman AH. The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. Neuromolecular Med 2010; 12:341-50; PMID:20502986; http://dx.doi.org/10.1007/s12017-010-8114-x
  • Levi S, Finazzi D. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms.Front Pharmacol 2014; 5:99; PMID:24847269; http://dx.doi.org/10.3389/fphar.2014.00099
  • Horowitz MP, Greenamyre JT. Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 2010; 20 Suppl 2:S551-68; PMID:20463401
  • Andreyev AY, Tsui HS, Milne GL, Shmanai VV, Bekish AV, Fomich MA, Pham MN, Nong Y, Murphy AN, Clarke CF, et al. Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress. Free Radic Biol Med 2015; 82:63-72; PMID:25578654; http://dx.doi.org/10.1016/j.freeradbiomed.2014.12.023
  • Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson disease: preclinical and clinical outcomes. Biochim Biophys Acta 2014; 1842:1282-94; PMID:24060637; http://dx.doi.org/10.1016/j.bbadis.2013.09.007
  • Murphy MP. Antioxidants as therapies: can we improve on nature? Free Radic Biol Med 2014; 66:20-3; PMID:23603661; http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.010
  • Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 2010; 1201:96-103; PMID:20649545; http://dx.doi.org/10.1111/j.1749-6632.2010.05627.x