2,512
Views
31
CrossRef citations to date
0
Altmetric
Review

EAST syndrome: Clinical, pathophysiological, and genetic aspects of mutations in KCNJ10

ORCID Icon, , , ORCID Icon & ORCID Icon
Article: e1195043 | Received 23 Mar 2016, Accepted 24 May 2016, Published online: 17 Jun 2016

References

  • Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 2009; 360(19):p. 1960-70; PMID:19420365; http://dx.doi.org/10.1056/NEJMoa0810276
  • Scholl UI, Choi M, Liu T, Ramaekers VT, Häusler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A 2009; 106(14):p. 5842-7; PMID:19289823; http://dx.doi.org/10.1073/pnas.0901749106
  • White CP, Waldron M, Jan JE, Carter JE. Oculocerebral hypopigmentation syndrome associated with Bartter syndrome. Am J Med Genet 1993; 46(5):p. 592-6; PMID:8322826; http://dx.doi.org/10.1002/ajmg.1320460526
  • Cross JH, Arora R, Heckemann RA, Gunny R, Chong K, Carr L, Baldeweg T, Differ AM, Lench N, Varadkar S, et al. Neurological features of epilepsy, ataxia, sensorineural deafness, tubulopathy syndrome. Dev Med Child Neurol 2013; 55(9):p. 846-56; PMID:23924083; http://dx.doi.org/10.1111/dmcn.12171
  • Freudenthal B, Kulaveerasingam D, Lingappa L, Shah MA, Brueton L, Wassmer E, Ognjanovic M, Dorison N, Reichold M, Bockenhauer D, et al. KCNJ10 mutations disrupt function in patients with EAST syndrome. Nephron Physiol 2011; 119(3):p. p40-8; PMID:21849804; http://dx.doi.org/10.1159/000330250
  • Parrock S, Hussain S, Issler N, Differ AM, Lench N, Guarino S, Oosterveld MJ, Keijzer-Veen M, Brilstra E, van Wieringen H, et al. KCNJ10 mutations display differential sensitivity to heteromerisation with KCNJ16. Nephron Physiol 2013; 123(3–4):p. 7-14; PMID:24193250; http://dx.doi.org/10.1159/000356353
  • Scholl UI, Dave HB, Lu M, Farhi A, Nelson-Williams C, Listman JA, Lifton RP. SeSAME/EAST syndrome–phenotypic variability and delayed activity of the distal convoluted tubule. Pediatr Nephrol 2012; 27(11):p. 2081-90; PMID:22907601; http://dx.doi.org/10.1007/s00467-012-2219-4
  • Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T, et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci U S A 2010; 107(32):p. 14490-5; PMID:20651251; http://dx.doi.org/10.1073/pnas.1003072107
  • Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 1996; 12(1):p. 24-30; PMID:8528245; http://dx.doi.org/10.1038/ng0196-24
  • Kleta R, Bockenhauer D. Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol 2006; 104(2):p. p73-80; PMID:16785747; http://dx.doi.org/10.1159/000094001
  • Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 1996; 13(2):p. 183-8; PMID:8640224; http://dx.doi.org/10.1038/ng0696-183
  • Scheinman SJ, Guay-Woodford LM, Thakker RV, Warnock DG. Genetic disorders of renal electrolyte transport. N Engl J Med 1999; 340(15):p. 1177-87; PMID:10202170; http://dx.doi.org/10.1056/NEJM199904153401507
  • Tanemoto M, Abe T, Uchida S, Kawahara K. Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome. FEBS Lett 2014; 588(6):p. 899-905; PMID:24561201; http://dx.doi.org/10.1016/j.febslet.2014.02.024
  • Shi M, Zhao G. The EAST syndrome and KCNJ10 mutations. N Engl J Med 2009; 361(6):p. 630; author reply 630-1; PMID:19657131; http://dx.doi.org/10.1056/NEJMc091202
  • Stivaros S. How the imaging investigation of EAST syndrome points towards the future of radiological multi-parametric phenotyping of a genetic disease. Dev Med Child Neurol 2013; 55(9):p. 783-4
  • Chen J, Zhao HB. The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss. Neuroscience 2014; 265:p. 137-46; PMID:24480364; http://dx.doi.org/10.1016/j.neuroscience.2014.01.036
  • Olsen ML, Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 2008; 107(3):p. 589-601; PMID:18691387; http://dx.doi.org/10.1111/j.1471-4159.2008.05615.x
  • Kuffler SW, Nicholls JG. The physiology of neuroglial cells. Ergeb Physiol 1966; 57:p. 1-90; PMID:5330861; http://dx.doi.org/10.1007/BF02259903
  • Orkand RK, Nicholls JG, Kuffler SW. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 1966; 29(4):p. 788-806; PMID:5966435
  • Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004; 129(4):p. 1045-56; PMID:15561419; http://dx.doi.org/10.1016/j.neuroscience.2004.06.008
  • Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 2001; 21(15):p. 5429-38; PMID:11466414
  • Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 2000; 20(15):p. 5733-40; PMID:10908613
  • Thompson DA, Feather S, Stanescu HC, Freudenthal B, Zdebik AA, Warth R, Ognjanovic M, Hulton SA, Wassmer E, van't Hoff W, et al. Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome. J Physiol 2011; 589(Pt 7):p. 1681-9; PMID:21300747; http://dx.doi.org/10.1113/jphysiol.2010.198531
  • Marcus DC, Feather S, Stanescu HC, Freudenthal B, Zdebik AA, Warth R, Ognjanovic M, Hulton SA, Wassmer E, van't Hoff W, et al. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 2002; 282(2):p. C403-7; PMID:11788352; http://dx.doi.org/10.1152/ajpcell.00312.2001
  • Zdebik AA, Wangemann P, Jentsch TJ. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 2009; 24:p. 307-16; PMID:19815857; http://dx.doi.org/10.1152/physiol.00018.2009
  • Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C. Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 2003; 177(1-2):p. 71-80; PMID:12618319; http://dx.doi.org/10.1016/S0378-5955(02)00799-2
  • Ito M, Inanobe A, Horio Y, Hibino H, Isomoto S, Ito H, Mori K, Tonosaki A, Tomoike H, Kurachi Y. Immunolocalization of an inwardly rectifying K+ channel, K(AB)-2 (Kir4.1), in the basolateral membrane of renal distal tubular epithelia. FEBS Lett 1996; 388(1):p. 11-5; PMID:8654579; http://dx.doi.org/10.1016/0014-5793(96)00502-9
  • Tanemoto M, Abe T, Onogawa T, Ito S. PDZ binding motif-dependent localization of K+ channel on the basolateral side in distal tubules. Am J Physiol Renal Physiol 2004; 287(6):p. F1148-53; PMID:15292049; http://dx.doi.org/10.1152/ajprenal.00203.2004
  • Bindels RJ. 2009 Homer W. Smith Award: Minerals in motion: from new ion transporters to new concepts. J Am Soc Nephrol 2010; 21(8):p. 1263-9; PMID:20595678; http://dx.doi.org/10.1681/ASN.2010010001
  • Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 2000; 80(1):p. 277-313; PMID:10617770
  • Bandulik S, Schmidt K, Bockenhauer D, Zdebik AA, Humberg E, Kleta R, Warth R, Reichold M. The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 2011; 461(4):p. 423-35; PMID:21221631; http://dx.doi.org/10.1007/s00424-010-0915-0
  • Beck JS, Laprade R, Lapointe JY. Coupling between transepithelial Na transport and basolateral K conductance in renal proximal tubule. Am J Physiol 1994; 266(4 Pt 2):p. F517-27; PMID:8184883
  • Koefoed-Johnsen V, Ussing HH. The nature of the frog skin potential. Acta Physiol Scand 1958; 42(3–4):p. 298-308; PMID:13544986; http://dx.doi.org/10.1111/j.1748-1716.1958.tb01563.x
  • Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H, Lourdel S, Kurachi Y, Vandewalle A, Teulon J, Paulais M. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Renal Physiol 2008; 294(6):p. F1398-407; PMID:18367659; http://dx.doi.org/10.1152/ajprenal.00288.2007
  • Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem 1998; 273(44):p. 29150-5; PMID:9786924; http://dx.doi.org/10.1074/jbc.273.44.29150
  • Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005; 115(6):p. 1651-8; PMID:15902302; http://dx.doi.org/10.1172/JCI24134
  • Takumi T, Ishii T, Horio Y, Morishige K, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakanishi S. A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J Biol Chem 1995; 270(27):p. 16339-46; PMID:7608203; http://dx.doi.org/10.1074/jbc.270.27.16339
  • Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN, Eaton MJ, Nichols CG. Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem 2010; 285(46):p. 36040-8; PMID:20807765; http://dx.doi.org/10.1074/jbc.M110.163170
  • Williams DM, Lopes CM, Rosenhouse-Dantsker A, Connelly HL, Matavel A, O-Uchi J, McBeath E, Gray DA. Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J Am Soc Nephrol 2010; 21(12):p. 2117-29; PMID:21088294; http://dx.doi.org/10.1681/ASN.2009121227
  • Lourdel S, Paulais M, Cluzeaud F, Bens M, Tanemoto M, Kurachi Y, Vandewalle A, Teulon J. An inward rectifier K+ channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels. The Journal of Physiology 2002; 538(2):p. 391-404; PMID:11790808; http://dx.doi.org/10.1113/jphysiol.2001.012961
  • Tanemoto M, Kittaka N, Inanobe A, Kurachi Y. In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. The Journal of Physiology 2000; 525(3):p. 587-592; PMID:10856114; http://dx.doi.org/10.1111/j.1469-7793.2000.00587.x
  • Zhang C, Wang L, Su XT, Lin DH, Wang WH. KCNJ10 (Kir4.1) is expressed in the basolateral membrane of the cortical thick ascending limb. Am J Physiol Renal Physiol 2015; 308(11):p. F1288-96; PMID:25834074; http://dx.doi.org/10.1152/ajprenal.00687.2014
  • Tang X, Hang D, Sand A, Kofuji P. Variable loss of Kir4.1 channel function in SeSAME syndrome mutations. Biochem Biophys Res Commun 2010; 399(4):p. 537-41; PMID:20678478; http://dx.doi.org/10.1016/j.bbrc.2010.07.105
  • Hibino H, Higashi-Shingai K, Fujita A, Iwai K, Ishii M, Kurachi Y. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. European Journal of Neuroscience 2004; 19(1):p. 76-84; PMID:14750965; http://dx.doi.org/10.1111/j.1460-9568.2004.03092.x