1,671
Views
3
CrossRef citations to date
0
Altmetric
Addendum

Pigment epithelium-derived factor (PEDF) normalizes matrix defects in iPSCs derived from Osteogenesis imperfecta Type VI

, &
Article: e1212150 | Received 18 May 2016, Accepted 06 Jul 2016, Published online: 10 Aug 2016

References

  • Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 2002; 17:30-8; PMID:11771667; http://dx.doi.org/10.1359/jbmr.2002.17.1.30
  • Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive Osteogenesis imperfecta. Am J Hum Genet 2011; 88:362-71; PMID:21353196; http://dx.doi.org/10.1016/j.ajhg.2011.01.015
  • Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, et al. Mutations in SERPINF1 cause Osteogenesis imperfecta type VI. J Bone Miner Res 2011; 26:2798-803; PMID:21826736; http://dx.doi.org/10.1002/jbmr.487
  • Venturi G, Gandini A, Monti E, Dalle Carbonare L, Corradi M, Vincenzi M, Valenti MT, Valli M, Pelilli E, Boner A, et al. Lack of expression of SERPINF1, the gene coding for pigment epithelium-derived factor, causes progressively deforming Osteogenesis imperfecta with normal type I collagen. J Bone Miner Res 2012; 27:723-8; PMID:22113968; http://dx.doi.org/10.1002/jbmr.1480
  • Rauch F, Husseini A, Roughley P, Glorieux FH, Moffatt P. Lack of circulating pigment epithelium-derived factor is a marker of Osteogenesis imperfecta type VI. J Clin Endocrinol Metab 2012; 97:E1550-6; PMID:22669302; http://dx.doi.org/10.1210/jc.2012-1827
  • Bogan R, Riddle RC, Li Z, Kumar S, Nandal A, Faugere MC, Boskey A, Crawford SE, Clemens TL. A mouse model for human Osteogenesis imperfecta type VI. J Bone Miner Res 2013; 28:1531-6; PMID:23413146; http://dx.doi.org/10.1002/jbmr.1892
  • Al-Jallad H, Palomo T, Roughley P, Glorieux FH, McKee MD, Moffatt P, Rauch F. The effect of SERPINF1 in-frame mutations in Osteogenesis imperfecta type VI. Bone 2015; 76:115-20; PMID:25868797; http://dx.doi.org/10.1016/j.bone.2015.04.008
  • Farber CR, Reich A, Barnes AM, Becerra P, Rauch F, Cabral WA, Bae A, Quinlan A, Glorieux FH, Clemens TL, et al. A novel IFITM5 mutation in severe atypical Osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res 2014; 29:1402-11; PMID:24519609; http://dx.doi.org/10.1002/jbmr.2173
  • Tombran-Tink J, Johnson LV. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci 1989; 30:1700-7; PMID:2668219
  • Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci U S A 1993; 90:1526-30; PMID:8434014; http://dx.doi.org/10.1073/pnas.90.4.1526
  • Tombran-Tink J, Mazuruk K, Rodriguez IR, Chung D, Linker T, Englander E, Chader GJ. Organization, evolutionary conservation, expression and unusual Alu density of the human gene for pigment epithelium-derived factor, a unique neurotrophic serpin. Mol Vis 1996; 2:11; PMID:9238088
  • Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015; 347:1260419; PMID:25613900; http://dx.doi.org/10.1126/science.1260419
  • Petersen SV, Valnickova Z, Enghild JJ. Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: purification and characterization. Biochem J 2003; 374:199-206; PMID:12737624; http://dx.doi.org/10.1042/bj20030313
  • Yamagishi S, Adachi H, Abe A, Yashiro T, Enomoto M, Furuki K, Hino A, Jinnouchi Y, Takenaka K, Matsui T, et al. Elevated serum levels of pigment epithelium-derived factor in the metabolic syndrome. J Clin Endocrinol Metab 2006; 91:2447-50; PMID:16522692; http://dx.doi.org/10.1210/jc.2005-2654
  • Tombran-Tink J, Barnstable CJ. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 2003; 4:628-36; PMID:12894238; http://dx.doi.org/10.1038/nrn1176
  • Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285:245-8; PMID:10398599; http://dx.doi.org/10.1126/science.285.5425.245
  • Chen C, Tso AW, Law LS, et al. Plasma level of pigment epithelium-derived factor is independently associated with the development of the metabolic syndrome in Chinese men: a 10-year prospective study. J Clin Endocrinol Metab 2010; 95:5074-81; PMID:20685859; http://dx.doi.org/10.1210/jc.2010-0727
  • Choi KM, Hwang SY, Hong HC, Yang SJ, Choi HY, Yoo HJ, Lee KW, Nam MS, Park YS, Woo JT, et al. C1q/TNF-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) concentrations in patients with type 2 diabetes and metabolic syndrome. Diabetes 2012; 61:2932-6; PMID:22837306; http://dx.doi.org/10.2337/db12-0217
  • Park K, Lee K, Zhang B, Zhou T, He X, Gao G, Murray AR, Ma JX. Identification of a novel inhibitor of the canonical Wnt pathway. Mol Cell Biol 2011; 31:3038-51; PMID:21576363; http://dx.doi.org/10.1128/MCB.01211-10
  • Gattu AK, Swenson ES, Iwakiri Y, Samuel VT, Troiano N, Berry R, Church CD, Rodeheffer MS, Carpenter TO, Chung C. Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity and reduced bone mineral content. Faseb J 2013; 27:4384-94; PMID:23887690; http://dx.doi.org/10.1096/fj.13-232900
  • Li F, Song N, Tombran-Tink J, Niyibizi C. Pigment epithelium-derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cells 2013; 31:2714-23; PMID:23939834; http://dx.doi.org/10.1002/stem.1505
  • Li F, Song N, Tombran-Tink J, Niyibizi C. Pigment epithelium derived factor suppresses expression of sost/sclerostin by osteocytes: implication for its role in bone matrix mineralization. J Cell Physiol 2015; 230:1243-9; PMID:25363869; http://dx.doi.org/10.1002/jcp.24859
  • Quan GM, Ojaimi J, Li Y, Kartsogiannis V, Zhou H, Choong PF. Localization of pigment epithelium-derived factor in growing mouse bone. Calcif Tissue Int 2005; 76:146-53; PMID:15549636; http://dx.doi.org/10.1007/s00223-004-0068-2
  • Tombran-Tink J, Barnstable CJ. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. Biochem Biophys Res Commun 2004; 316:573-9; PMID:15020256; http://dx.doi.org/10.1016/j.bbrc.2004.02.076
  • Belinsky GS, Sreekumar B, Andrejecsk JW, Saltzman WM, Gong J, Herzog RI, Lin S, Horsley V, Carpenter TO, Chung C. Pigment epithelium-derived factor restoration increases bone mass and improves bone plasticity in a model of Osteogenesis imperfecta type VI via Wnt3a blockade. FASEB J 2016; PMID:27127101
  • Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081; PMID:23085770; http://dx.doi.org/10.1101/cshperspect.a015081
  • van der Horst G, van der Werf SM, Farih-Sips H, van Bezooijen RL, Lowik CW, Karperien M. Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 2005; 20:1867-77; PMID:16160745; http://dx.doi.org/10.1359/JBMR.050614
  • Rajagopal A, Homan EP, Joeng KS, Suzuki M, Bertin T, Cela R, Munivez E, Dawson B, Jiang MM, Gannon F, et al. Restoration of the serum level of SERPINF1 does not correct the bone phenotype in Serpinf1 null mice. Mol Genet Metab 2015; 117(3):378-82; PMID:26693895; http://dx.doi.org/10.1016/j.ymgme.2015.11.015
  • Crowe S, Wu LE, Economou C, Turpin SM, Matzaris M, Hoehn KL, Hevener AL, James DE, Duh EJ, Watt MJ, et al. Pigment epithelium-derived factor contributes to insulin resistance in obesity. Cell Metab 2009; 10:40-7; PMID:19583952; http://dx.doi.org/10.1016/j.cmet.2009.06.001
  • Gattu AK, Birkenfeld AL, Iwakiri Y, Jay S, Saltzman M, Doll J, Protiva P, Samuel VT, Crawford SE, Chung C. Pigment epithelium-derived factor (PEDF) suppresses IL-1beta-mediated c-Jun N-terminal kinase (JNK) activation to improve hepatocyte insulin signaling. Endocrinology 2014; 155:1373-85; PMID:24456163; http://dx.doi.org/10.1210/en.2013-1785
  • Apte RS, Barreiro RA, Duh E, Volpert O, Ferguson TA. Stimulation of neovascularization by the anti-angiogenic factor PEDF. Invest Ophthalmol Vis Sci 2004; 45:4491-7; PMID:15557459; http://dx.doi.org/10.1167/iovs.04-0172
  • Valverde P, Zhang J, Fix A, et al. Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice. J Bone Miner Res 2008; 23:1775-88; PMID:18597627; http://dx.doi.org/10.1359/jbmr.080605
  • Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Snorradóttir S, Center JR, et al. New sequence variants associated with bone mineral density. Nat Genet 2009; 41:15-7; PMID:19079262; http://dx.doi.org/10.1038/ng.284
  • Becerra SP, Palmer I, Kumar A, Steele F, Shiloach J, Notario V, Chader GJ. Overexpression of fetal human pigment epithelium-derived factor in Escherichia coli. A functionally active neurotrophic factor. J Biol Chem 1993; 268:23148-56; PMID:8226833
  • Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res 1991; 53:411-4; PMID:1936177; http://dx.doi.org/10.1016/0014-4835(91)90248-D
  • Crawford SE, Stellmach V, Ranalli M, Huang X, Huang L, Volpert O, De Vries GH, Abramson LP, Bouck N. Pigment epithelium-derived factor (PEDF) in neuroblastoma: a multifunctional mediator of Schwann cell antitumor activity. J Cell Sci 2001; 114:4421-8; PMID:11792807
  • Seigel GM, Tombran-Tink J, Becerra SP, Chader GJ, Diloreto DA, Jr, del Cerro C, Lazar ES, del Cerro M. Differentiation of Y79 retinoblastoma cells with pigment epithelial-derived factor and interphotoreceptor matrix wash: effects on tumorigenicity. Growth Factors 1994; 10:289-97; PMID:7803045; http://dx.doi.org/10.3109/08977199409010995
  • Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C, Ferrón SR, Aroca-Aguilar JD, Sánchez P, Mira H, Escribano J, Fariñas I. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 2006; 9:331-9; PMID:16491078; http://dx.doi.org/10.1038/nn1657
  • Qi W, Yang C, Dai Z, Che D, Feng J, Mao Y, Cheng R, Wang Z, He X, Zhou T, et al. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of wnt signaling. Diabetes 2014; 64(4):1407-19; PMID:25368097; http://dx.doi.org/10.2337/db14-1111
  • Shin ES, Sorenson CM, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol 2014; 306:L620-34; PMID:24318110; http://dx.doi.org/10.1152/ajplung.00188.2013
  • Gonzalez R, Jennings LL, Knuth M, Orth AP, Klock HE, Ou W, Feuerhelm J, Hull MV, Koesema E, Wang Y, et al. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci U S A 2010; 107:3552-7; PMID:20133595; http://dx.doi.org/10.1073/pnas.0914019107
  • Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19:179-92; PMID:23389618; http://dx.doi.org/10.1038/nm.3074
  • Nusse R. Wnt signaling. Cold Spring Harb Perspect Biol 2012; 1-4; http://dx.doi.org/10.1101/cshperspect.a011163
  • Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, et al. WNT1 mutations in early-onset osteoporosis and Osteogenesis imperfecta. N Engl J Med 2013; 368:1809-16; PMID:23656646; http://dx.doi.org/10.1056/NEJMoa1215458
  • Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J, Gavrilova O, Lu T, Bao J, Han D, Sack MN, Finkel T. Wnt signaling regulates hepatic metabolism. Sci Signal 2011; 4:ra6; PMID:21285411
  • Protiva P, Gong J, Sreekumar B, Torres R, Zhang X, Belinsky GS, Cornwell M, Crawford SE, Iwakiri Y, Chung C. Pigment Epithelium-Derived Factor (PEDF) inhibits Wnt/-catenin signaling in the liver. Cell Mol Gastroenterol Hepatol 2015; 1:535-49; PMID:26473164; http://dx.doi.org/10.1016/j.jcmgh.2015.06.006
  • Tsai TH, Shih SC, Ho TC, Ma HI, Liu MY, Chen SL, Tsao YP. Pigment epithelium-derived factor 34-mer peptide prevents liver fibrosis and hepatic stellate cell activation through down-regulation of the PDGF receptor. PLoS One 2014; 9:e95443; PMID:24763086; http://dx.doi.org/10.1371/journal.pone.0095443
  • Liu W, Singh R, Choi CS, Lee HY, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A. Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 2012; 287:7213-23; PMID:22232553; http://dx.doi.org/10.1074/jbc.M111.286724
  • Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 2010; 107:943-52; PMID:20947863; http://dx.doi.org/10.1161/CIRCRESAHA.110.223750
  • Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 2011; 8:409-12; PMID:21460823; http://dx.doi.org/10.1038/nmeth.1591
  • Belinsky GS, et al. Pigment epithelium–derived factor restoration increases bone mass and improves bone plasticity in a model of Osteogenesis imperfecta type VI via Wnt3a blockade. FASEB Journal 2016 [epub ahead of print]; http://dx.doi.org/10.1096/fj.201500027R