1,931
Views
18
CrossRef citations to date
0
Altmetric
Addendum

Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis

, &
Article: e1223580 | Received 10 Jun 2016, Accepted 05 Aug 2016, Published online: 30 Aug 2016

References

  • Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Ann Rev Neurosci 2007; 30:575-621; PMID:17417937; http://dx.doi.org/10.1146/annurev.neuro.29.051605.113042
  • Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 1999; 8:2047-53; PMID:10484774; http://dx.doi.org/10.1093/hmg/8.11.2047
  • Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001; 10:1441-8; PMID:11448935; http://dx.doi.org/10.1093/hmg/10.14.1441
  • Rubinsztein DC, Leggo J, Crow TJ, DeLisi LE, Walsh C, Jain S, Paykel ES. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia and bipolar affective disorder. Am J Med Genet 1996; 67:495-8; PMID:8886170; http://dx.doi.org/10.1002/(SICI)1096-8628(19960920)67:5%3c495::AID-AJMG12%3e3.0.CO;2-I
  • Tsuji S. Spinocerebellar ataxia type 17: latest member of polyglutamine disease group highlights unanswered questions. Arch Neurol 2004; 61:183-4; PMID:14967764; http://dx.doi.org/10.1001/archneur.61.2.183
  • Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 2003; 54:367-75; PMID:12953269; http://dx.doi.org/10.1002/ana.10676
  • Bruni AC, Takahashi-Fujigasaki J, Maltecca F, Foncin JF, Servadio A, Casari G, D'Adamo P, Maletta R, Curcio SA, et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol 2004; 61:1314-20; PMID:15313853; http://dx.doi.org/10.1001/archneur.61.8.1314
  • Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 2005; 4:2-6; PMID:15895552; http://dx.doi.org/10.1080/14734220510007914
  • Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). Cerebellum 2008; 7:170-8; PMID:18418687; http://dx.doi.org/10.1007/s12311-008-0016-1
  • Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, Morita M, Tsuji S, Takahashi H. SCA17 homozygote showing Huntington's disease-like phenotype. Ann Neurol 2004; 55:281-6; PMID:14755733; http://dx.doi.org/10.1002/ana.10824
  • Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 2004; 61:727-33; PMID:15148151; http://dx.doi.org/10.1001/archneur.61.5.727
  • Craig K, Keers SM, Walls TJ, Curtis A, Chinnery PF. Minimum prevalence of spinocerebellar ataxia 17 in the north east of England. J Neurol Sci 2005; 239:105-9; PMID:16223509; http://dx.doi.org/10.1016/j.jns.2005.08.009
  • Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, Li SH, Hwang JC, Fang K, et al. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson disease. Clin Genet 2004; 65:209-14; PMID:14756671; http://dx.doi.org/10.1111/j.0009-9163.2004.00213.x
  • Nikolov DB, Burley S.K. Two.1 A resolution refined structure of a TATA box-binding protein (TBP). Nat Struct Biol 1994; 1:621-37; PMID:7634102; http://dx.doi.org/10.1038/nsb0994-621
  • Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Ann Rev Genet 2000; 34:77-137; PMID:11092823; http://dx.doi.org/10.1146/annurev.genet.34.1.77
  • Burley SK, Roeder RG. Biochemistry and structural biology of transcription factor IID (TFIID). Ann Rev Biochem 1996; 65:769-99; PMID:8811195; http://dx.doi.org/10.1146/annurev.bi.65.070196.004005
  • Martianov I, Viville S, Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science 2002; 298:1036-9; PMID:12411709; http://dx.doi.org/10.1126/science.1076327
  • Friedman MJ, Wang CE, Li XJ, Li S. Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem 2008; 283:8283-90; PMID:18218637; http://dx.doi.org/10.1074/jbc.M709674200
  • Reid SJ, Rees MI, van Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, et al. Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 2003; 13:37-45; PMID:12758065; http://dx.doi.org/10.1016/S0969-9961(03)00014-7
  • Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 2007; 10:1519-28; PMID:17994014; http://dx.doi.org/10.1038/nn2011
  • Shah AG, Friedman MJ, Huang S, Roberts M, Li XJ, Li S. Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17. Hum Mol Genet 2009; 18:4141-52; PMID:19643914; http://dx.doi.org/10.1093/hmg/ddp363
  • Ren J, Jegga AG, Zhang M, Deng J, Liu J, Gordon CB, Aronow BJ, Lu LJ, Zhang B, et al. A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet 2011; 20:3424-36; PMID:21653638; http://dx.doi.org/10.1093/hmg/ddr251
  • Solaroglu I, Jadhav V, Zhang JH. Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 2007; 12:712-24; PMID:17127331; http://dx.doi.org/10.2741/2095
  • Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, et al. A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 2013; 33:9068-81; PMID:23699518; http://dx.doi.org/10.1523/JNEUROSCI.5622-12.2013
  • Huang S, Ling JJ, Yang S, Li XJ, Li S. Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain 2011; 134:1943-58; PMID:21705419; http://dx.doi.org/10.1093/brain/awr146
  • Yang S, Huang S, Gaertig MA, Li XJ, Li S. Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron 2014; 81:349-65; PMID:24462098; http://dx.doi.org/10.1016/j.neuron.2013.12.002
  • Huang S, Yang S, Guo J, Yan S, Gaertig MA, Li S, Li XJ. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice. Cell Rep 2015; 13:196-208; PMID:26387956; http://dx.doi.org/10.1016/j.celrep.2015.08.060
  • Friedman MJ, Li S, Li XJ. Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. J Biol Chem 2009; 284:27944-51; PMID:19656944; http://dx.doi.org/10.1074/jbc.M109.037937
  • Lee LC, Chen CM, Wang HC, Hsieh HH, Chiu IS, Su MT, Hsieh-Li HM, Wu CH, Lee GC, et al. Role of the CCAAT-binding protein NFY in SCA17 pathogenesis. PloS one 2012; 7:e35302; PMID:22530004; http://dx.doi.org/10.1371/journal.pone.0035302
  • Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat Med 2011; 17:1445-7; PMID:22001907; http://dx.doi.org/10.1038/nm.2494
  • Ingram M, Wozniak EA, Duvick L, Yang R, Bergmann P, Carson R, O'Callaghan B, Zoghbi HY, Henzler C, et al. Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways. Neuron 2016; 89:1194-207; PMID:26948890; http://dx.doi.org/10.1016/j.neuron.2016.02.011
  • Scholefield J, Wood MJ. Therapeutic gene silencing strategies for polyglutamine disorders. Trends Genet 2010; 26:29-38; PMID:19962779; http://dx.doi.org/10.1016/j.tig.2009.11.005
  • Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res 2014; 42:6787-810; PMID:24848018; http://dx.doi.org/10.1093/nar/gku385
  • Rodriguez-Lebron E, Costa Mdo C, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL, Davidson BL, Paulson HL. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol Ther 2013; 21:1909-18; PMID:23820820; http://dx.doi.org/10.1038/mt.2013.152
  • Ramachandran PS, Boudreau RL, Schaefer KA, La Spada AR, Davidson BL. Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther 2014; 22:1635-42; PMID:24930601; http://dx.doi.org/10.1038/mt.2014.108
  • Voutilainen MH, Bäck S, Pörsti E, Toppinen L, Lindgren L, Lindholm P, Peränen J, Saarma M, Tuominen RK. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson disease. J Neurosci 2009; 29:9651-9; PMID:19641128; http://dx.doi.org/10.1523/JNEUROSCI.0833-09.2009
  • Yu YQ, Liu LC, Wang FC, Liang Y, Cha DQ, Zhang JJ, Shen YJ, Wang HP, Fang S, et al. Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J Cereb Blood Flow Metab 2010; 30:79-91; PMID:19773801; http://dx.doi.org/10.1038/jcbfm.2009.181
  • Lindholm P, Saarma M. Novel CDNF/MANF family of neurotrophic factors. Dev Neurobiol 2010; 70:360-71; PMID:20186704