3,085
Views
36
CrossRef citations to date
0
Altmetric
Addendum

Canine models of human rare disorders

& ORCID Icon
Article: e1241362 | Received 06 Jul 2016, Accepted 21 Sep 2016, Published online: 13 Oct 2016

References

  • Wang GD, Zhai W, Yang HC, Wang L, Zhong L, Liu YH, Fan RX, Yin TT, Zhu CL, Poyarkov AD, et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res 2016; 26:21-33; PMID:26667385; http://dx.doi.org/10.1038/cr.2015.147
  • Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, Linderholm A, Mattiangeli V, Teasdale MD, Dimopoulos EA, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 2016; 352:1228-31; PMID:27257259; http://dx.doi.org/10.1126/science.aaf3161
  • Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, 3rd, Zody MC, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438:803-19; PMID:16341006; http://dx.doi.org/10.1038/nature04338
  • Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NH, Zody MC, Anderson N, Biagi TM, Patterson N, Pielberg GR, Kulbokas EJ, 3rd, et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 2007; 39:1321-8; PMID:17906626; http://dx.doi.org/10.1038/ng.2007.10
  • van Steenbeek FG, Hytönen MK, Leegwater PA, Lohi H. The canine era: the rise of a biomedical model. Anim Genet 2016; 47(5):519-27; PMID:27324307
  • Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF, Kruglyak L, Ostrander EA. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 2004; 14:2388-96; PMID:15545498; http://dx.doi.org/10.1101/gr.3147604
  • Drögemüller C, Karlsson EK, Hytönen MK, Perloski M, Dolf G, Sainio K, Lohi H, Lindblad-Toh K, Leeb T. A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science 2008; 321:1462; PMID:18787161; http://dx.doi.org/10.1126/science.1162525
  • Hytönen MK, Arumilli M, Lappalainen AK, Kallio H, Snellman M, Sainio K, Lohi H. A novel GUSB mutation in Brazilian terriers with severe skeletal abnormalities defines the disease as mucopolysaccharidosis VII. PLoS One 2012; 7:e40281; PMID:22815736; http://dx.doi.org/10.1371/journal.pone.0040281
  • Seppälä EH, Reuser AJ, Lohi H. A nonsense mutation in the acid α-glucosidase gene causes Pompe disease in Finnish and Swedish Lapphunds. PLoS One 2013; 8:e56825; http://dx.doi.org/10.1371/journal.pone.0056825
  • Kyöstila K, Lappalainen AK, Lohi H. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin α subunit 10. PLoS One 2013; 8:e75621; PMID:24086591; http://dx.doi.org/10.1371/journal.pone.0075621
  • Kyöstila K, Cizinauskas S, Seppälä EH, Suhonen E, Jeserevics J, Sukura A, Syrjä P, Lohi H. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet 2012; 8:e1002759; PMID:22719266; http://dx.doi.org/10.1371/journal.pgen.1002759
  • Kyöstila K, Syrjä P, Jagannathan V, Chandrasekar G, Jokinen TS, Seppälä EH, Becker D, Drögemüller M, Dietschi E, Drögemüller C, et al. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease. PLoS Genet 2015; 11:e1005169; PMID:25875846; http://dx.doi.org/10.1371/journal.pgen.1005169
  • Seppälä EH, Jokinen TS, Fukata M, Fukata Y, Webster MT, Karlsson EK, Kilpinen SK, Steffen F, Dietschi E, Leeb T, et al. LGI2 truncation causes a remitting focal epilepsy in dogs. PLoS Genet 2011; 7:e1002194; http://dx.doi.org/10.1371/journal.pgen.1002194
  • Casal ML, Lewis JR, Mauldin EA, Tardivel A, Ingold K, Favre M, Paradies F, Demotz S, Gaide O, Schneider P. Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia. Am J Hum Genet 2007; 81:1050-6; PMID:17924345; http://dx.doi.org/10.1086/521988
  • Callan MB, Haskins ME, Wang P, Zhou S, High KA, Arruda VR. Successful phenotype improvement following gene therapy for severe Hemophilia A in privately owned dogs. PLoS One 2016; 11:e0151800; PMID:27011017; http://dx.doi.org/10.1371/journal.pone.0151800
  • Beltran WA, Cideciyan AV, Iwabe S, Swider M, Kosyk MS, McDaid K, Martynyuk I, Ying GS, Shaffer J, Deng WT, et al. Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease. Proc Natl Acad Sci U S A 2015; 112:E5844-53; PMID:26460017; http://dx.doi.org/10.1073/pnas.1509914112
  • Hytönen MK, Arumilli M, Lappalainen AK, Owczarek-Lipska M, Jagannathan V, Hundi S, Salmela E, Venta P, Sarkiala E, Jokinen T, et al. Molecular characterization of three canine models of human rare bone diseases: Caffey, van den Ende-Gupta, and Raine Syndromes. PLoS Genet 2016; 12:e1006037; PMID:27187611; http://dx.doi.org/10.1371/journal.pgen.1006037
  • Thornburg LP. Infantile cortical hyperostosis (Caffey-Silverman syndrome). Animal model: craniomandibular osteopathy in the canine. Am J Pathol 1979; 95:575-8; PMID:377993
  • Nistala H, Mäkitie O, Juppner H. Caffey disease: new perspectives on old questions. Bone 2014; 60:246-51; PMID:24389367; http://dx.doi.org/10.1016/j.bone.2013.12.030
  • Gensure RC, Makitie O, Barclay C, Chan C, Depalma SR, Bastepe M, Abuzahra H, Couper R, Mundlos S, Sillence D, et al. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J Clin Invest 2005; 115:1250-7; PMID:15864348; http://dx.doi.org/10.1172/JCI22760
  • Kitaoka T, Miyoshi Y, Namba N, Miura K, Kubota T, Ohata Y, Fujiwara M, Takagi M, Hasegawa T, Juppner H, et al. Two Japanese familial cases of Caffey disease with and without the common COL1A1 mutation and normal bone density, and review of the literature. Eur J Pediatr 2014; 173:799-804; PMID:24390061; http://dx.doi.org/10.1007/s00431-013-2252-8
  • Chou JY, Mansfield BC. The SLC37 family of sugar-phosphate/phosphate exchangers. Curr Top Membr 2014; 73:357-82; PMID:24745989; http://dx.doi.org/10.1016/B978-0-12-800223-0.00010-4
  • Kim JY, Tillison K, Zhou S, Wu Y, Smas CM. The major facilitator superfamily member Slc37a2 is a novel macrophage- specific gene selectively expressed in obese white adipose tissue. Am J Physiol Endocrinol Metab 2007; 293:E110-20; PMID:17356011; http://dx.doi.org/10.1152/ajpendo.00404.2006
  • Ha BG, Hong JM, Park JY, Ha MH, Kim TH, Cho JY, Ryoo HM, Choi JY, Shin HI, Chun SY, et al. Proteomic profile of osteoclast membrane proteins: identification of Na+/H+ exchanger domain containing 2 and its role in osteoclast fusion. Proteomics 2008; 8:2625-39; PMID:18600791; http://dx.doi.org/10.1002/pmic.200701192
  • Saksa N, Neme A, Ryynänen J, Uusitupa M, de Mello VD, Voutilainen S, Nurmi T, Virtanen JK, Tuomainen TP, Carlberg C. Dissecting high from low responders in a vitamin D3 intervention study. J Steroid Biochem Mol Biol 2015; 148:275-82; PMID:25448738; http://dx.doi.org/10.1016/j.jsbmb.2014.11.012
  • Anastasio N, Ben-Omran T, Teebi A, Ha KC, Lalonde E, Ali R, Almureikhi M, Der Kaloustian VM, Liu J, Rosenblatt DS, et al. Mutations in SCARF2 are responsible for Van Den Ende-Gupta syndrome. Am J Hum Genet 2010; 87:553-9; PMID:20887961; http://dx.doi.org/10.1016/j.ajhg.2010.09.005
  • Ishii J, Adachi H, Aoki J, Koizumi H, Tomita S, Suzuki T, Tsujimoto M, Inoue K, Arai H. SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. J Biol Chem 2002; 277:39696-702; PMID:12154095; http://dx.doi.org/10.1074/jbc.M206140200
  • Hwang M, Morasso MI. The novel murine Ca2+-binding protein, Scarf, is differentially expressed during epidermal differentiation. J Biol Chem 2003; 278:47827-33; PMID:12970338; http://dx.doi.org/10.1074/jbc.M306561200
  • Hwang M, Kalinin A, Morasso MI. The temporal and spatial expression of the novel Ca2+-binding proteins, Scarf and Scarf2, during development and epidermal differentiation. Gene Expr Patterns 2005; 5:801-8; PMID:15922673; http://dx.doi.org/10.1016/j.modgep.2005.03.010
  • Takeyari S, Yamamoto T, Kinoshita Y, Fukumoto S, Glorieux FH, Michigami T, Hasegawa K, Kitaoka T, Kubota T, Imanishi Y, et al. Hypophosphatemic osteomalacia and bone sclerosis caused by a novel homozygous mutation of the FAM20C gene in an elderly man with a mild variant of Raine syndrome. Bone 2014; 67:56-62; PMID:24982027; http://dx.doi.org/10.1016/j.bone.2014.06.026
  • Rafaelsen SH, Raeder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, Bjerknes R. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res 2013; 28:1378-85; PMID:23325605; http://dx.doi.org/10.1002/jbmr.1850
  • Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, Zackai EH, Al-Gazali LI, Hulskamp G, Kingston HM, et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet 2007; 81:906-12; PMID:17924334; http://dx.doi.org/10.1086/522240
  • Simpson MA, Scheuerle A, Hurst J, Patton MA, Stewart H, Crosby AH. Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia. Clin Genet 2009; 75:271-6; PMID:19250384; http://dx.doi.org/10.1111/j.1399-0004.2008.01118.x
  • Wang X, Wang S, Lu Y, Gibson MP, Liu Y, Yuan B, Feng JQ, Qin C. FAM20C plays an essential role in the formation of murine teeth. J Biol Chem 2012; 287:35934-42; PMID:22936805; http://dx.doi.org/10.1074/jbc.M112.386862