201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel D90_K91insN mutation in exon 4 of the SOD1 gene caused familial amyotrophic lateral sclerosis in a Chinese pedigree

, , , , , , , & show all
Pages 516-521 | Received 07 Sep 2017, Accepted 18 Mar 2018, Published online: 02 Apr 2018

References

  • Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013; 14:248–64.
  • Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K, et al. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82:623–7.
  • Riva N, Agosta F, Lunetta C, Filippi M, Quattrini A. Recent advances in amyotrophic lateral sclerosis. J Neurol. 2016; 263:1241–54.
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.
  • Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep. 2006;6:37–46.
  • Andersen PM, Nilsson P, Ala-Hurula V, Keranen ML, Tarvainen I, Haltia T. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet. 1995;10:61–6.
  • Hand CK, Mayeux-Portas V, Khoris J, Briolotti V, Clavelou P, Camu W, et al. Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family. Ann Neurol. 2001;49:267–71.
  • Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: a user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat. 2012;33:1345–51.
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.
  • Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.
  • Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.
  • Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of “hot spots of aggregation in polypeptides” . BMC Bioinformatics. 2007;8:65.
  • Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.
  • Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. ALS Other Mot Neuron Disord. 2000;1:293–9.
  • Perry JJ, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta. 2010;1804:245–62.
  • Elam JS, Taylor AB, Strange R, Antonyuk S, Doucette PA, Rodriguez JA, et al. Amyloid-like filaments and waterfilled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Mol Biol. 2003;10:461–7.
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint Consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
  • Nakamura A, Kuru S, Hineno A, Kobayashi C, Kinoshita T, Miyazaki D, et al. Slowly progressing lower motor neuron disease caused by a novel duplication mutation in exon 1 of the SOD1 gene. Neurobiol Aging. 2014;35:2420.e7–.e12.
  • Tripolszki K, Csányi B, Nagy D, Ratti A, Tiloca C, Silani V, et al. Genetic analysis of the SOD1 and C9ORF72 genes in Hungarian patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2017;53:195.e1–.e5.
  • Rezania K, Yan J, Dellefave L, Deng HX, Siddique N, Pascuzzi RT, et al. A rare Cu/Zn superoxide dismutase mutation causing familial amyotrophic lateral sclerosis with variable age of onset, incomplete penetrance and a sensory neuropathy. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:162–6.
  • Morita M, Abe K, Takahashi M, Onodera Y, Okumura H, Niino M. A novel mutation Asp90Val in the SOD1 gene associated with Japanese familial ALS. Eur J Neurol. 1998;5:389–92.
  • Calvo A, Ilardi A, Moglia C, Canosa A, Carrara G, Valentini C, et al. An ALS case with a novel D90N-SOD1 heterozygous missense mutation. Amyotrophic Lateral Sclerosis. 2012;13:393–5.
  • Regal L, Vanopdenbosch L, Tilkin P, Van Den Bosch L, Thijs V, Sciot R, et al. The G93C mutation in superoxide dismutase 1: clinicopathologic phenotype and prognosis. Arch Neurol. 2006;63:262–7.
  • Restagno G, Lombardo F, Sbaiz L, Mari C, Gellera C, Alimonti D, et al. The rare G93D mutation causes a slowly progressing lower motor neuron disease. Amyotrophic Lateral Sclerosis. 2008;9:35–9.
  • Kawata A, Kato S, Hayashi H, Hirai S. Prominent sensory and autonomic disturbances in familial amyotrophic lateral sclerosis with a Gly93Sermutation in the SOD1 gene. J Neurol Sci. 1997;153:82–5.
  • Suzuki M, Irie T, Watanabe T, Mikami H, Yamazaki T, Oyanagi K, et al. Familial amyotrophic lateral sclerosis with Gly93Ser mutation in Cu/Zn superoxide dismutase: a clinical and neuropathological study. J Neurol Sci. 2008;268:140–4.
  • Hosler BA, Nicholson GA, Sapp PC, Chin W, Orrell RW, de Belleroche JS, et al. Three novel mutations and two variants in the gene for Cu/Zn superoxide dismutase in familial amyotrophic lateral sclerosis. Neuromuscul Disord. 1996;6:361–6.
  • Orrell RW, Habgood JJ, Gardiner I, King AW, Bowe FA, Hallewell RA, et al. Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for copper-zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Neurology. 1997;48:746–51.
  • Orrell RW, de Belleroche J, Marklund S, Bowe F, Hallewell R. A novel SOD mutant and ALS. Nature. 1995;374:504–5.
  • Prudencio M, Hart PJ, Borchelt DR, Andersen PM. Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum Mol Genet. 2009;18:3217–26.
  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264:1772–5.
  • Saccon RA, Bunton-Stasyshyn RK, Fisher EM, Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis?. Brain. 2013;136:2342–58.
  • Majoor-Krakauer D, Willems PJ, Hoffman A. Genetic epidemiology of amyotrophic lateral sclerosis. Clin Genet. 2003;63:83–101.
  • Penco S, Lunetta C, Mosca L, Maestri E, Avemaria F, Tarlarini C, et al. Phenotypic heterogeneity in a SOD1 G93D Italian ALS family: an example of human model to study a complex disease. J Mol Neurosci. 2011;44:25–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.