799
Views
5
CrossRef citations to date
0
Altmetric
Special issue: Commemorative Issue in honor of the late Professor Maurice Kleman

Defects in bent-core liquid crystals

, &
Pages 48-73 | Received 01 Feb 2022, Accepted 02 Jun 2022, Published online: 26 Jun 2022

References

  • Friedel G. Les états mésomorphes de la matière. Ann Phys. 1922;18:273–315.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Claredon Press; 1993.
  • Kléman M. Points, lines and walls in liquid crystals, magnetic systems and various ordered media. Chichester: John Wiley & Sons; 1983.
  • Kleman M, Lavrentovich OD. Soft matter physics: An introduction. partially ordered systems. In: Lam L, editor. New York: Springer; 2003.
  • Friedel J, Kléman M. Application of dislocation theory to liquid crystals. In: Simmons JA, Bullough R, editor. Fundamental aspects of dislocation theory. Washington, DC: US National Bureau of Standards; 1970. p. 607–636.
  • Kléman M. Defects and their relationship to molecular configurations in nematic polymers. Faraday Discuss Chem Soc. 1985;79:215–224.
  • Lavrentovich OD, Kleman M. Cholesteric liquid crystals: defects and topology, in 2001, Springer-Verlag: New York. In: H-S Kitzerow, C Bahr, editor. Chirality in liquid crystals. New York: Springer-Verlag; 2001. p. 115–158.
  • Kléman M, Lavrentovich O, Nastishin Y. Dislocations and disclinations in mesomorphic phases. In: Nabarro F, Hirst J, editors. Dislocations of solids, V 12. Amsterdam: Elsevier B.V; 2004. p. 150–265.
  • Kleman M, Lavrentovich OD. Topological point defects in nematic liquid crystals. Philos Mag. 2006;86:4117–4137.
  • Kleman M, Lavrentovich OD. Liquids with conics. Liq Cryst. 2009;36:1085–1099.
  • Kleman M, Friedel J. Disclinations, dislocations, and continuous defects: a reappraisal. Rev Mod Phys. 2008;80:61–115.
  • Achard MF, Kleman M, Nastishin YA, et al. Liquid crystal helical ribbons as isometric textures. Eur Phys J E. 2005;16:37–47.
  • Kléman M, Friedel J. Lignes de dislocation dans les cholestériques. J Phys Colloq. 1969;30:C4-43–C4-53.
  • Bouligand Y, Kléman M. Helical disclination pairs in cholesteric mesophases. J Phys-Paris. 1970;31:1041–1054.
  • Cladis PE, Kléman M. Non-singular disclinations of strength S = +1 in nematics. J Phys. 1972;33:591–598.
  • Kleman M, Krishnamurthy KS. Defects in the twist-bend nematic phase: stabilities and instabilities of focal conic domains and related topics. Phys Rev E. 2018;98:032705.
  • De’Neve T, Kléman M, Navard P. Defect morphology in a biaxial thermotropic polymer. J Phys II. 1992;2:187–207.
  • Kléman M, Williams CE. Interaction between parallel edge dislocation lines in a smectic a liquid-crystal. J Phys Lett-Paris. 1974;35:L49–L51.
  • Kléman M, Williams CE, Costello MJ, et al. Defect structures in lyotropic smectic phases revealed by freeze-fracture electron-microscopy. Philos Mag. 1977;35:33–56.
  • Kléman M. Elasticity and defects in a smectic-C phase. Ann Phys-Paris. 1978;3:265–265.
  • Bouligand Y, Kléman M. Topology of singular lines in non-chiral smectics. J Phys-Paris. 1979;40:79–97.
  • Allain M, Kléman M. Thermodynamic defects, instabilities and mobility processes in the lamellar phase of a nonionic surfactant. J Phys-Paris. 1987;48:1799–1807.
  • Bourdon L, Kléman M, Lejcek L, et al. On static helical instabilities of screw dislocations in a Sma phase and on their consequence on plasticity. J Phys-Paris. 1981;42:261–268.
  • Meyer C, Yu N, Kleman M. Helical defects in smectic- A and smectic- A* phases. Phys Rev E – Stat Nonlinear, Soft Matter Phys. 2010;82:031704-1–12.
  • Meyer C, Logbo H, Briouel B, et al. Double helical defects in smectic a and smectic A* phases. Liq Cryst. 2010;37:1047–1057.
  • Boltenhagen P, Lavrentovich O, Kleman M. Oily streaks and focal conic domains in L alpha lyotropic liquid crystals. J Phys II. 1991;1:1233–1252.
  • Blanc C, Kleman M. Curvature walls and focal conic domains in a lyotropic lamellar phase. Eur Phys J B. 1999;10:53–60.
  • Blanc C, Kleman M. The confinement of smectics with a strong anchoring. Eur Phys J E. 2001;4:241–251.
  • Kléman M, Oswald P. Columnar discotic mesophases: elasticity, dislocations, instabilities. J Phys. 1982;43:655–662.
  • Kléman M. The coexistence of cholesteric and 2-dimensional orders. J Phys. 1985;46:1193–1203.
  • Yu N, Kléman M, Malthête J, et al. Identification of a TGBA liquid crystal phase via its defects. Eur Phys J E. 2001;5:353–357.
  • Kleman M, Yu N, Malthête J. Defects in a TGBA phase: a theoretical approach. Eur Phys J E. 2002;8:67–78.
  • Kléman M. Energetics of the focal conics of smectic phases. J Phys. 1977;38:1511–1518.
  • Bourdon L, Sommeria J, Kléman M. On the existence of singular lines in the focal domains of the Sm C and Sm C* phases. J Phys-Paris. 1982;43:77–96.
  • Sethna JP, Kléman M. Spheric domains in smectic liquid-crystals. Phys Rev A. 1982;26:3037–3040.
  • Boltenhagen P, Kléman M, Lavrentovich O. Focal conic domains of positive Gaussian curvature in a swollen lamellar L-alpha phase. Comptes Rendus L Acad Des Sci Ser II. 1992;315:931–935.
  • Boltenhagen P, Lavrentovich OD, Kléman M. Focal conic domains with positive Gaussian curvature and saddle-splay rigidity of smectic Lα phases. Phys Rev A. 1992;46:R1743–R1746.
  • Lavrentovich OD, Kléman M, Pergamenshchik VM. Nucleation of focal conic domains in smectic A liquid-crystals. J Phys II. 1994;4:377–404.
  • Blanc C, Kleman M. Tiling the plane with noncongruent toric focal conic domains. Phys Rev E. 2000;62:6739–6748.
  • Kléman M, Lavrentovich OD. Grain boundaries and the law of corresponding cones in smectics. Eur Phys J E. 2000;2:47–57.
  • Kleman M, Lavrentovich O. Curvature energy of a focal conic domain with arbitrary eccentricity. Phys Rev E. 2000;61:1574–1578.
  • Yu N, Meyer C, Kleman M. Imperfect focal conic domains in A smectics: a textural analysis. Liq Cryst. 2008;35:609–624.
  • Kleman M. Developable domains in hexagonal liquid crystals. J Phys Paris. 1980;41:737–745.
  • Oswald P, Kléman M. Défauts dans une mésophase hexagonale discotique: disinclinaisons et parois. J Phys-Paris. 1981;42:1461–1472.
  • Toulouse G, Kléman M. Principles of a classification of defects in ordered media. Basic Notions Condens Matter Phys. 2018;37:389–391.
  • Kléman M, Michel L, Toulouse G. Classification of topologically stable defects in ordered media. J Phys Lettres. 1977;38:195–197.
  • Kléman M, Michel L. Spontaneous breaking of Euclidean invariance and classification of topologically stable defects and configurations of crystals and liquid crystals maurice. Phys Rev Lett. 1978;40:1387–1390.
  • Krishnamurthy KS, Tadapatri P, Weissflog W. Twist disclination loops in a bent-core nematic liquid crystal. Soft Matter. 2011;7:6273–6284.
  • Friedel J, de Gennes PG. Disclination loops in liquid crystals. C.R Acad. Sci. Paris. 1969;268:257.
  • Pardaev SA, Williams JC, Twieg RJ, et al. Polar structure of disclination loops in nematic liquid crystals probed by second harmonic light scattering. Phys Rev E. 2015;91:032501.
  • Helfrich W. Alignment-inversion walls in nematic liquid crystals in the presence of a magnetic field. Phys Rev Lett. 1968;21:1518–1521.
  • Aharoni A. Introduction to the theory of ferromagnetism. Oxford, New York: Clarendon Press; Oxford University Press; 1996.
  • Meyer RB. Piezoelectric effects in liquid crystals. Phys Rev Lett. 1969;22:918–921.
  • Li B-X, Nastishin YA, Wang H, et al. Liquid crystal phases with unusual structures and physical properties formed by acute-angle bent core molecules. Phys Rev Res. 2020;2:33371.
  • Jákli A, Lavrentovich OD, Selinger JV. Physics of liquid crystals of bent-shaped molecules. Rev Mod Phys. 2018;90:045004.
  • Freiser MJ. Ordered states of a nematic liquid. Phys Rev Lett. 1970;24:1041–1043.
  • Li J-F, Percec V, Rosenblatt C, et al. Biaxiality in a cyclic thermotropic nematic liquid crystal. Eur Lett. 1994;25:199–204.
  • Niori T, Sekine T, Watanabe J, et al. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J Mater Chem. 1996;6:1231–1233.
  • Van Le K, Mathews M, Chambers M, et al. Electro-optic technique to study biaxiality of liquid crystals with positive dielectric anisotropy: The case of a bent-core material. Phys Rev E. 2009;79:030701.
  • Senyuk B, Wonderly H, Mathews M, et al. Surface alignment, anchoring transitions, optical properties, and topological defects in the nematic phase of thermotropic bent-core liquid crystal A131. Phys Rev E. 2010;82:041711–041713.
  • Kim Y-K, Cukrov G, Xiang J, et al. Domain walls and anchoring transitions mimicking nematic biaxiality in the oxadiazole bent-core liquid crystal C7. Soft Matter. 2015;11:3963–3970.
  • Kim Y-K, Senyuk B, Lavrentovich OD. Molecular reorientation of a nematic liquid crystal by thermal expansion. Nat Commun. 2012;3:1133.
  • Kim Y-K, Majumdar M, Senyuk BI, et al. Search for biaxiality in a shape-persistent bent-core nematic liquid crystal. Soft Matter. 2012;8:8880.
  • Meyer RB. Existence of even indexed disclinations in nematic liquid crystals. Philos Mag. 1973;27:405–424.
  • Volovik GE, Mineyev VP. Investigation of singularities in superfluid He-3 and liquid-crystals by homotopic topology methods. Zhurnal Eksp I Teor Fiz. 1977;72:2256–2274.
  • Volovik GE, Lavrentovich OD. Topological dynamics of defects: boojums in nematic drops. Sov Phys JETP. 1983;58:1159–1166.
  • Harkai S, Cordoyannis G, Susser AL, et al. Manipulation of mechanically nanopatterned line defect assemblies in plane-parallel nematic liquid crystals. Liq Cryst Rev. 2022; in press.
  • Toulouse G. Pour les nématiques biaxes. J Phys Lettres. 1977;38:67–68.
  • Ishikawa T, Lavrentovich OD. Crossing of disclinations in nematic slabs. Europhys Lett. 1998;41:171–176.
  • Dirac PAM. Quantised singularities in the electromagnetic field. Proc. Royal Soc.A. 1931;133:60–72.
  • Kurik MV, Lavrentovich OD. Defects in liquid-crystals – homotopy-theory and experimental investigations. Sov. Phys. Uspekhi. 1988;31:196–224.
  • Senyuk B, Kim Y-K, Tortora L, et al. Surface alignment, anchoring transitions, optical properties and topological defects in nematic bent-core materials C7 and C12. Mol Cryst Liq Cryst. 2011;540:20–41.
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84:031704.
  • Chen D, Porada JH, Hooper JB, et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc Natl Acad Sci. 2013;110:15931–15936.
  • Borshch V, Kim Y-K, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4:2635-1–8.
  • Meyer RB. Macroscopic phenomena in nematic polymers. In: Ciferri A, Krigbaum WR, Meyer RB, editor. Polym liq cryst. New York/London: Academic Press, Inc.; 1982. p. 133–185.
  • Dozov I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Eur Lett. 2001;56:247–253.
  • Memmer R. Liquid crystal phases of achiral banana-shaped molecules: a computer simulation study. Liq Cryst. 2002;29:483–496.
  • Meyer RB. Effects of electric and magnetic fields on the structure of cholesteric liquid crystals. Appl Phys Lett. 1968;12:281–282.
  • De Gennes PG. Calcul de la distorsion d’une structure cholesterique par un champ magnetique. Solid State Commun. 1968;6:163–165.
  • Xiang J, Shiyanovskii SV, Imrie C, et al. Electrooptic response of chiral nematic liquid crystals with oblique helicoidal director. Phys Rev Lett. 2014;112:217801.
  • Salili SM, Xiang J, Wang H, et al. Magnetically tunable selective reflection of light by heliconical cholesterics. Phys Rev E. 2016;94:042705.
  • Pieranski P. Cholesteric dislocations in mica wedges. Liq Cryst Rev. 2022; in press.
  • Wu ST, Smalyukh II. Review: hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals. Liq Cryst Rev. 2022; in press.
  • Panov V, Nagaraj M, Vij J, et al. Spontaneous periodic deformations in nonchiral planar-aligned bimesogens with a nematic-nematic transition and a negative elastic constant. Phys Rev Lett. 2010;105:167801.
  • Dawood AA, Grossel MC, Luckhurst GR, et al. On the twist-bend nematic phase formed directly from the isotropic phase. Liq Cryst. 2016;43:2–12.
  • Babakhanova G, Parsouzi Z, Paladugu S, et al. Elastic and viscous properties of the nematic dimer CB7CB. Phys Rev E. 2017;96:062704.
  • Challa PK, Borshch V, Parri O, et al. Twist-bend nematic liquid crystals in high magnetic fields. Phys Rev E. 2014;89:060501(R)-1–5.
  • You R, Paterson DA, Storey JMD, et al. Formation of periodic zigzag patterns in the twist- bend nematic liquid crystal phase by surface treatment. Liq Cryst. 2017;44:168–176.
  • Panov VP, Sreenilayam SP, Panarin YP, et al. Characterization of the sub-micrometer hierarchy levels in the twist-bend nematic phase with nanometric helices via photopolymerization. Explanation for the sign reversal in the polar response. Nano Lett. 2017;17:7515–7519.
  • Simpson FFP, Mandle RJ, Moore JN, et al. Investigating the Cusp between the nano- and macro-sciences in supermolecular liquid-crystalline twist-bend nematogens. J Mater Chem C. 2017;5:5102–5110.
  • Eremin A, Nádasi H, Kurochkina M, et al. Light-responsive microstructures in droplets of the twist-bend nematic phase. Langmuir. 2018;34:14519–14527.
  • Jakli A, Saupe A. Spontaneous transition from chevron to striped texture of a planar smectic C* liquid crystal. Phys Rev A. 1992;45:5674–5680.
  • Subacius D, Voloschenko D, Bos P, et al. Preliminary communication modulated structures with field-controlled direction and periodicity in SmC liquid crystals. Liq Cryst. 1999;26:295–298.
  • Kleman M. Chronologies d’un physician. Paris: Calvage & Mounet. 2016.
  • Friedel G, Grandjean F. Observations géométriques sur les liquides á conique focales. Bull Soc Fr Minéral. 1910;33:409–465.
  • Friedel J. Dislocations. Oxford: Pergamon Press; 1964.
  • Krishnamurthy KS, Kanakala MB, Yelamaggad CV, et al. Instabilities in the electric Freedericksz state of the twist-bend nematic liquid crystal CB7CB. Soft Matter. 2018;14:5393–5406.
  • Krishnamurthy KS, Rao DSS, Kanakala MB, et al. Topological defects due to twist-bend nematic drops mimicking colloidal particles in a nematic medium. Soft Matter. 2020;16:7479–7491.
  • Bragg W. Liquid crystals. Nature. 1934;133:445–446.
  • Bidaux R, Boccara N, Sarma G, et al. Statistical properties of focal conic textures in smectic liquid crystals. J Phys. 1973;34:661–672.
  • Lavrentovich OD. Hierarchy of defect structures in space filling by flexible smectic-A layers. Sov Phys JETP. 1986;64:984–990.
  • Lavrentovich OD, Kléman M. Field-driven first-order structural transition in restricted geometry of a smectic-A cell. Phys Rev E. 1993;48:R39–R42.
  • Rosenblatt CS, Pindak R, Clark NA, et al. The parabolic focal conic : a new smectic a defect. J Phys Fr. 1977;38:1105–1115.
  • Folks WR, Keast S, Krentzel TA, et al. Photocontrol of smectic spacing. Mol Cryst Liq Cryst. 1998;320:77–88.
  • Smalyukh II, Pratibha R, Madhusudana NV, et al. Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals. Eur Phys J E. 2005;16:179–191.
  • Hough LE, Spannuth M, Nakata M, et al. Chiral isotropic liquids from achiral molecules. Science. 2009;325:452–456.
  • Chen D, Shen Y, Zhu C, et al. Interface structure of the dark conglomerate liquid crystal phase. Soft Matter. 2011;7:1879.
  • Chen D, Shao R, Maclennan JE, et al. Topography of bent-core liquid crystals at the air/liquid crystal interface. Liq Cryst. 2013;40:1730–1735.
  • Nastishin YA, Nguyen HT, Kleman M, et al. Textural analysis of a mesophase with banana shaped molecules. Eur Phys J E. 2003;12:581–591.
  • Chen D, Heberling M-S, Nakata M, et al. Structure of the B4 liquid crystal phase near a glass surface. ChemPhysChem. 2012;13:155–159.
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist−bend nematic−nematic phase transition driven by the photoisomerization of an azobenzene–based nonsymmetric liquid crystal dimer. J Am Chem Soc. 2016;138:5283–5289.
  • Feng C, Feng J, Saha R, et al. Manipulation of the nanoscale heliconical structure of a twist-bend nematic material with polarized light. Phys Rev Res Rapid Commun. 2020;2:032004(R).
  • Dozov I, Meyer C. Analogy between the twist-bend nematic and the smectic A phases and coarse-grained description of the macroscopic NTB properties. Liq Cryst. 2017;44:4–23.
  • Meyer C, Stoenescu D, Luckhurst GR, et al. Smectic-like bâtonnets in nematic/twist-bend nematic biphasic samples. Liq Cryst. 2017;44:232–243.
  • Meyer C, Dozov I. Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase. Soft Matter. 2016;12:574–580.
  • Lavrentovich OD. Filling of space by flexible smectic layers. Mol Cryst Liq Cryst Inc Nonlinear Opt. 1987;151:417–424.
  • Fournier JB, Durand G. Focal conic faceting in smectic-A liquid crystals. J Phys II. 1991;1:845–870.
  • Fournier JB, Dozov I, Durand G. Surface frustration and texture instability in smectic-A liquid crystals. Phys Rev A. 1990;41:2252–2255.
  • Meyer C, Cunff LL, Belloul M, et al. Focal conic stacking in smectic a liquid crystals: smectic flower and apollonius tiling. Materials (Basel). 2009;2:499–513.
  • Honglawan A, Beller DA, Cavallaro M, et al. Pillar-assisted epitaxial assembly of toric focal conic domains of smectic-A liquid crystals. Adv Mater. 2011;23:5519–5523.
  • Honglawan A, Beller DA, Cavallaro M, et al. Topographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystals. Proc Natl Acad Sci USA. 2013;110:34–39.
  • Beller DA, Gharbi MA, Honglawan A, et al. Focal conic flower textures at curved interfaces. Phys Rev X. 2013;3:041026.
  • Lavrentovich OD, Yang D-K. Cholesteric cellular patterns with electric-field-controlled line tension. Phys Rev E. 1998;57:R6269–R6272.
  • Pardaev SA, Shamid SM, Tamba MG, et al. Second harmonic light scattering induced by defects in the twist-bend nematic phase of achiral liquid crystal dimers. Soft Matter. 2016;12:4472–4482.
  • Scarbrough AN, Tuchband MR, Korblova ED, et al. The heliconical nematic twist-bend phase from “classic” bent-core benzylideneanilines with oligomethylene cores. Mol Cryst Liq Cryst. 2017;647:430–438.
  • Perez A, Brunet M, Parodi O. Cofocal conics in smectics C. J Phys Lett. 1978;39:353–357.
  • Perez A, Brunet M, Parodi O. Defects in chiral smectics-C. 3. surface boundary toric defects. J Phys-Paris. 1981;42:1559–1568.
  • Binysh J, Pollard J, Alexander GP. Geometry of bend: singular lines and defects in twist-bend nematics. Phys Rev Lett. 2020;125:47801.
  • Volovik GE, Lavrentovich OD. The topological dynamics of defects – boojums in nematic drops. Zh Eksp Teor Fiz. 1983;85:1997–2010.
  • Kurik MV, Lavrentovich OD. Monopole structures and shape of drops of smectics-C. Sov Phys JETP. 1983;58:299–307.
  • Lavrentovich OD. Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops. Liq Cryst. 1998;24:117–126.
  • Urbanski M, Reyes CG, Noh J, et al. Liquid crystals in micron-scale droplets, shells and fibers. J Phys Condens Matter. 2017;29:133003.
  • Lopez-Leon T, Fernandez-Nieves A. Drops and shells of liquid crystal. Colloid Polym Sci. 2011;289:345–359.
  • Li Y, Suen JJ-Y, Prince E, et al. Colloidal cholesteric liquid crystal in spherical confinement. Nat Commun. 2016;7:12520.
  • Krishnamurthy KS, Shankar Rao DS, Kanakala MB, et al. Electric response of topological dipoles in nematic colloids with twist-bend nematic droplets as the dispersed phase. Phys Rev E. 2021;103:042701.
  • Oswald P, Dequidt A, Poy G. Lehmann effect in nematic and cholesteric liquid crystals: a review. Liq Cryst Rev. 2019;7:142–166.
  • Lavrentovich OD, Nastishin Y. Division of drops of a liquid crystal in the case of a cholesteric-smectic-A phase transition. Sov Phys JETP Lett. 1984;40:1015–1019.
  • Muševič I. Liquid-crystal micro-photonics. Liq Cryst Rev. 2016;4:1–34.
  • Hernández RJ, Provenzano C, Mazzulla A, et al. Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics. Liq Cryst Rev. 2016;4:59–79.
  • Carlton RJ, Hunter JT, Miller DS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1:29–51.
  • Robinson C. Liquid-crystalline structures in solutions of polypeptide. Trans Faraday Soc. 1955;52:571–592.
  • Robinson C, Ward JC, Beevers RB. Liquid crystalline structure in Polypeptide solutions. Part 2. Faraday Soc. 1958;25:29–42.
  • Kurik MV, Lavrentovich OD. Negative-positive monopole transitions in cholesteric liquid-crystals. Sov Phys JETP Lett. 1982;35:444–447.
  • Li Y, Prince E, Cho S, et al. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals. Proc Natl Acad Sci USA. 2017;114:2137–2142.
  • Seč D, Porenta T, Ravnik M, et al. Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter. 2012;8:11982–11988.
  • Eremin A. Effects of photoswitching in complex partially ordered systems. Liq Cryst Rev. 2020;8:29–43.
  • Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. Liq Cryst Rev. 2020;8:59–129.
  • Yoshioka J, Salamon P, Paterson DA, et al. Spherical-cap droplets of a photo-responsive bent liquid crystal dimer. Soft Matter. 2019;15:989–998.
  • Liang HL, Schymura S, Rudquist P, et al. Nematic-smectic transition under confinement in liquid crystalline colloidal shells. Phys Rev Lett. 2011;106:1–4.
  • Lopez-Leon T, Fernandez-Nieves A, Nobili M, et al. Nematic-smectic transition in spherical shells. Phys Rev Lett. 2011;106:2–5.
  • Yun C-JJ, Vengatesan MR, Vij JK, et al. Hierarchical elasticity of bimesogenic liquid crystals with twist-bend nematic phase. Appl Phys Lett. 2015;106:173102.
  • Meiboom S, Sethna JP, Anderson PW, et al. Theory of the blue phase of cholesteric liquid crystals. Phys Rev Lett. 1981;46:1216–1219.
  • Meiboom S, Sammon M, Brinkman WF. Lattice of disclinations: the structure ofthe blue phases of cholesteric liquid crystals. Phys Rev A. 1983;27:438–454.
  • Wright D, Mermin N. Crystalline liquids: the blue phases. Rev Mod Phys. 1989;61:385–432.
  • Grelet E, Pansu B, Li M-H, et al. Structural investigations on smectic blue phases. Phys Rev Lett. 2001;86:3791–3794.
  • Reinitzer F. Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie und Verwandte Teile Anderer Wissenschaften. 1888;9:421–441.
  • Lehmann O. Scheinbar lebende fliessende kristalle. Z Phys Chem. 1906;56:750.
  • Gray GW. The Mesomorphic behviour of the fatty acid esters of cholesterol. J Chem Soc. 1955;726:3733–3739.
  • Saupe A. On molecular structure and physical properties of thermotropic liquid crystals. Mol Cryst Liq Cryst. 1969;7:59–74.
  • Coles HJ, Pivnenko M. Liquid crystal “blue phases” with a wide temperature range. Nature. 2005;436:997–1000.
  • Taushanoff S, Van Le K, Williams J, et al. Stable amorphous blue phase of bent-core nematic liquid crystals doped with a chiral material. J Mater Chem. 2010;20:5893.
  • Renn SR, Lubensky TC. Abrikosov dislocation lattice in a model of the cholesteric-to-smectic- A transition. Phys Rev A. 1988;38:2132–2147.
  • de Gennes PG. An analogy between superconductors and smectics A. Solid State Commun. 1972;10:753–756.
  • Goodby JW, Waugh MA, Stein SM, et al. Characterization of a new helical smectic liquid crystal. Nature. 1989;337:449–452.
  • Longa L, Tomczyk W. Twist-bend nematic phase in the presence of molecular chirality. Liq Cryst. 2018;45:2074–2085.
  • Longa L, Pająk G. Modulated nematic structures induced by chirality and steric polarization. Phys Rev E. 2016;93:040701(R) 1–5.
  • Balachandran R, Panov VP, Panarin YP, et al. Flexoelectric behavior of bimesogenic liquid crystals in the nematic phase – observation of a new self-assembly pattern at the twist-bend nematic and the nematic interface. J Mater Chem C. 2014;2:8179–8184.
  • Mandle RJ, Davis EJ, Archbold CT, et al. Microscopy studies of the nematic N TB phase of 1,11-di-(1′′-cyanobiphenyl-4-yl)undecane. J Mater Chem C. 2014;2:556–566.
  • Gorecka E, Vaupotič N, Zep A, et al. A twist-bend nematic (N TB) phase of chiral materials. Angew Chemie. 2015;54:10155–10159.
  • Walker R, Pociecha D, Storey J, et al. The chiral twist-bend nematic phase (N*TB). Chem – A Eur J. 2019;25:13329–13335.
  • Salili SM, Ribeiro de Almeida RR, Challa PK, et al. Spontaneously modulated chiral nematic structures of flexible bent-core liquid crystal dimers. Liq Cryst. 2017;44:160–164.
  • Walker R, Pociecha D, Salamończyk M, et al. Supramolecular liquid crystals exhibiting a chiral twist-bend nematic phase. Mater Adv. 2020;1:1622–1630.
  • Mandle RJ, Goodby JW. A novel nematic-like mesophase induced in dimers, trimers and tetramers doped with a highly chiral additive. Soft Matter. 2018;14:8846–8852.
  • Murachver MT, Nemati A, Salamończyk M, et al. Indication of a twist-grain-boundary-twist-bend phase of flexible core bent-shape chiral dimers. Soft Matter. 2019;15:3283–3290.
  • Porte G, Gomati R, El Haitamy O, et al. Morphological transformations of the primary surfactant structures in brine-rich mixtures of ternary systems (surfactant/alcohol/brine). J Phys Chem. 1986;90:5746–5751.
  • Nagaraj M. Dark conglomerate phases of bent-core liquid crystals. Liq Cryst. 2016;43:2244–2253.
  • Ortega J, Folcia CL, Etxebarria J, et al. Interpretation of unusual textures in the B2 phase of a liquid crystal composed of bent-core molecules. Phys Rev E. 2003;68:011707.
  • Pelzl G, Eremin A, Diele S, et al. Spontaneous chiral ordering in the nematic phase of an achiral banana-shaped compound. J Mater Chem. 2002;12:2591–2593.
  • Jákli A, Huang Y-M, Fodor-Csorba K, et al. Reversible switching between optically isotropic and birefringent states in a bent-core liquid crystal. Adv Mater. 2003;15:1606–1610.
  • Liao G, Stojadinovic S, Pelzl G, et al. Optically isotropic ferroelectric liquid crystal phase. Phys Rev E. 2005;72:021710.
  • Hough LE, Jung HT, Krueerke D, et al. Helical nanofilament phases. Science. 2009;325:456–460.
  • Ryu SH, Kim H, Lee S, et al. Nucleation and growth of a helical nanofilament (B4) liquid-crystal phase confined in nanobowls. Soft Matter. 2015;11:7778–7782.
  • Walba DM, Eshdat L, Körblova E, et al. On the nature of the B4 banana phase : crystal or not a crystal? On the nature of the B4 banana phase: crystal or not A. Cryst Growth Des. 2005;5:2091–2099.
  • Matsumoto EA, Alexander GP, Kamien RD. Helical nanofilaments and the high chirality limit of smectics A. Phys Rev Lett. 2009;103:257804.
  • Chen D, Heberling M-S, Nakata M, et al. Structure of the B4 liquid crystal phase near a glass surface. Chemphyschem. 2012;13:155–159.
  • Sekine T, Niori T, Sone M, et al. Origin of helix in achiral banana-shaped molecular systems. Jpn J Appl Phys. 1997;36:6455–6463.
  • Takanishi Y, Shin GJ, Jung JC, et al. Observation of very large chiral domains in a liquid crystal phase formed by mixtures of achiral bent-core and rod molecules. J Mater Chem. 2005;15:4020–4024.
  • Williams CE. Helical disclination lines in smectics a. Philos Mag. 1975;32:313–321.
  • Zhang C, Diorio N, Lavrentovich OD, et al. Helical nanofilaments of bent-core liquid crystals with a second twist. Nat Commun. 2014;5:3302.
  • Nakata M, Link DR, Araoka F, et al. A racemic layer structure in a chiral bent-core ferroelectric liquid crystal. Liq Cryst. 2001;28:1301–1308.
  • Lin SC, Ho RM, Chang CY, et al. Hierarchical superstructures with control of helicity from the self-assembly of chiral bent-core molecules. Chem – A Eur J. 2012;18:9091–9098.
  • Chen D, Tuchband MR, Horanyi B, et al. Diastereomeric liquid crystal domains at the mesoscale. Nat Commun. 2015;6:7763.
  • Tsai E, Richardson JM, Korblova E, et al. A modulated helical nanofilament phase. Angew Chem Int Ed Engl. 2013;52:5254–5257.
  • Li L, Salamonczyk M, Jákli A, et al. A dual modulated homochiral helical nanofi lament phase with local columnar ordering formed by bent core liquid crystals: effects of molecular chirality. Small. 2016;12:3944–3955.
  • Shadpour S, Nemati A, Salamończyk M, et al. Missing link between helical nano- and microfilaments in B4 phase bent-core liquid crystals, and deciphering which chiral center controls the filament handedness. Small. 2020;16:1–12.
  • Shadpour S, Nemati A, Boyd NJ, et al. Heliconical-layered nanocylinders (HLNCs) – hierarchical self-assembly in a unique B4 phase liquid crystal morphology. Mater Horizons. 2019;6:959–968.
  • Pelzl G, Diele S, Jákli A, et al. Preliminary communication helical superstructures in a novel smectic mesophase formed by achiral banana-shaped molecules. Liq Cryst. 1999;26:135–139.
  • Pelzl G, Diele S, Jákli A, et al. The mysterious B7 phase: from its discovery up to the present stage of research. Liq Cryst. 2006;33:1513–1523.
  • Jákli A, Krüerke D, Nair GG. Liquid crystal fibers of bent-core molecules. Phys Rev E. 2003;67:05170201–05170206.
  • Nemeş A, Eremin A, Stannarius R, et al. Structure characterization of free-standing filaments drawn in the liquid crystal state. Phys Chem Chem Phys. 2006;8:469–476.
  • Eremin A, Nemeş A, Stannarius R, et al. Structure and mechanical properties of liquid crystalline filaments. Phys Rev E. 2005;71:31705.
  • Stannarius R, Nemeş A, Eremin A. Plucking a liquid chord: mechanical response of a liquid crystal filament. Phys Rev E. 2005;72:020702.
  • Eremin A, Kornek U, Stern S, et al. Pattern-stabilized decorated polar liquid-crystal fibers. Phys Rev Lett. 2012;109:017801–017805.
  • Bailey CA, Jákli A. Role of molecular shape on bent-core liquid-crystal structures. Phys Rev Lett. 2007;99:207801.
  • Jákli A, Krüerke D, Sawade H, et al. Evidence for triclinic symmetry in smectic liquid crystals of bent-shape molecules. Phys Rev Lett. 2001;86:5715–5718.
  • Coleman DA, Jones CD, Nakata M, et al. Polarization splay as the origin of modulation in the B1 and B7 smectic phases of bent-core molecules. Phys Rev E. 2008;77:21703.
  • Vaupotič N, Čopič M, Gorecka E, et al. Modulated structures in bent-core liquid crystals: two faces of one phase. Phys Rev Lett. 2007;98:247802.
  • Coleman DA, Fernsler J, Chattham N, et al. Polarization-Modulated smectic liquid crystal phases. Science. 2003;301:1204–1211.
  • Pelzl G, Schroder MW, Dunemann U, et al. The first bent-core mesogens exhibiting a dimorphism B 7-SmCP A. J Mater Chem. 2004;14:2492–2498.
  • Vaupotič N, Čopič M, Gorecka E, et al. Modulated structures in bent-core liquid crystals: two faces of one phase. Phys Rev Lett. 2007;98:247802.
  • Folcia C, Etxebarria J, Ortega J, et al. Structure of mesogens possessing B7 textures: the case of the bent-core mesogen 8-OPIMB-NO2. Phys Rev E. 2005;72:041709.
  • Vaupotič N, Čopič M. Polarization modulation instability in liquid crystals with spontaneous chiral symmetry breaking. Phys Rev E. 2005;72:031701.
  • van Winkle DH, Clark NA. Freely suspended strands of tilted columnar liquid-crystal phases: one-dimensional nematics with orientational jumps. Phys Rev Lett. 1982;48:1407–1410.
  • Zhang C, Diorio N, Radhika S, et al. Two distinct modulated layer structures of an asymmetric bent-shape smectic liquid crystal. Liq Cryst. 2012;39:1149–1157.
  • Vaupotič N, Čopič M. Polarization modulation instability in liquid crystals with spontaneous chiral symmetry breaking. Phys Rev E. 2005;72:031701.
  • Pelzl G, Diele S, Weissflog W. Banana-shaped compounds – a new field of liquid crystals. Adv Mater. 1999;11:707–724.
  • Zhang C, Gao M, de Almeida RRR, et al. Polarization-modulated bent-core liquid crystal thin films without layer undulation. Phys Rev Lett. 2019;122:137801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.