1,010
Views
1
CrossRef citations to date
0
Altmetric
Methods Article

PRIMA: a gene-centered, RNA-to-protein method for mapping RNA-protein interactions

, , , , &
Article: e1295130 | Received 19 Dec 2016, Accepted 09 Feb 2017, Published online: 10 Mar 2017

References

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008; 582:1977-86; PMID:18342629; https://doi.org/10.1016/j.febslet.2008.03.004
  • Moore MJ. From birth to death: the complex lives of eukaryotic mRNAs. Science 2005; 309:1514-8; PMID:16141059; https://doi.org/10.1126/science.1111443
  • Szostak E, Gebauer F. Translational control by 3′-UTR-binding proteins. Briefings in functional genomics 2013; 12:58-65; PMID:23196851; https://doi.org/10.1093/bfgp/els056
  • Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D, Bell GW, Sive H, Bartel DP. Extensive alternative polyadenylation during zebrafish development. Genome Res 2012; 22:2054-66; PMID:22722342; https://doi.org/10.1101/gr.139733.112
  • Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T. A quantitative atlas of polyadenylation in five mammals. Genome Res 2012; 22:1173-83; PMID:22454233; https://doi.org/10.1101/gr.132563.111
  • Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, Mackowiak S, Mis E, Zegar C, Gutwein MR, Khivansara V, Attie O, et al. The Landscape of C. elegans 3′UTRs. Science 2010; 329:432-5; PMID:20522740; https://doi.org/10.1126/science.1191244
  • Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 2011; 469:97-101; PMID:21085120; https://doi.org/10.1038/nature09616
  • Tamburino AM, Ryder SP, Walhout AJ. A compendium of Caenorhabditis elegans RNA binding proteins predicts extensive regulation at multiple levels. G3 (Bethesda) 2013; 3:297-304; PMID:23390605; https://doi.org/10.1534/g3.112.004390
  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012; 149:1393-406; PMID:22658674; https://doi.org/10.1016/j.cell.2012.04.031
  • Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 2012; 46:674-90; PMID:22681889; https://doi.org/10.1016/j.molcel.2012.05.021
  • Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet 2014; 15:829-45; PMID:25365966; https://doi.org/10.1038/nrg3813
  • Tenenbaum SA, Carson CC, Lager PJ, Keene JD. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 2000; 97:14085-90; PMID:11121017; https://doi.org/10.1073/pnas.97.26.14085
  • Keene JD, Komisarow JM, Friedersdorf MB. RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 2006; 1:302-7; PMID:17406249; https://doi.org/10.1038/nprot.2006.47
  • Ule J, Jensen K, Mele A, Darnell RB. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 2005; 37:376-86; PMID:16314267; https://doi.org/10.1016/j.ymeth.2005.07.018
  • Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 2008; 456:464-9; PMID:18978773; https://doi.org/10.1038/nature07488
  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141:129-41; PMID:20371350; https://doi.org/10.1016/j.cell.2010.03.009
  • Pagano JM, Clingman CC, Ryder SP. Quantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes. RNA 2011; 17:14-20; PMID:21098142; https://doi.org/10.1261/rna.2428111
  • Ray D, Kazan H, Chan ET, Pena Castillo L, Chaudhry S, Talukder S, Blencowe BJ, Morris Q, Hughes TR. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 2009; 27:667-70; PMID:19561594; https://doi.org/10.1038/nbt.1550
  • Butter F, Scheibe M, Morl M, Mann M. Unbiased RNA-protein interaction screen by quantitative proteomics. Proc Natl Acad Sci USA 2009; 106:10626-31; PMID:19541640; https://doi.org/10.1073/pnas.0812099106
  • Matia-Gonzalez AM, Laing EE, Gerber AP. Conserved mRNA-binding proteomes in eukaryotic organisms. Nat Struct Mol Biol 2015; 22:1027-33; PMID:26595419; https://doi.org/10.1038/nsmb.3128
  • SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA 1996; 93:8496-501; PMID:8710898; https://doi.org/10.1073/pnas.93.16.8496
  • Zhang B, Kraemer B, SenGupta D, Fields S, Wickens M. Yeast three-hybrid system to detect and analyze interactions between RNA and protein. Methods Enzymol 1999; 306:93-113; PMID:10432449
  • Walhout AJM, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 2000; 287:116-22; PMID:10615043; https://doi.org/10.1126/science.287.5450.116
  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, et al. A map of the interactome network of the metazoan C. elegans. Science 2004; 303:540-3; PMID:14704431; https://doi.org/10.1126/science.1091403
  • Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 2008; 40:181-8; PMID:18223650; https://doi.org/10.1038/ng.2007.70
  • Reece-Hoyes JS, Pons C, Diallo A, Mori A, Shrestha S, Kadreppa S, Nelson J, Diprima S, Dricot A, Lajoie BR, et al. Extensive rewiring and complex evolutionary dynamics in a C. elegans multiparameter transcription factor network. Mol Cell 2013; 51:116-27; https://doi.org/10.1016/j.molcel.2013.05.018
  • MacNeil LT, Pons C, Arda HE, Giese GE, Myers CL, Walhout AJM. Transcription factor activity mapping of a tissue-specific gene regulatory network. Cell Syst 2015; 1:152-62; PMID:26430702; https://doi.org/10.1016/j.cels.2015.08.003
  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green Fluorescent Protein as a marker for gene expression. Science 1994; 263:802-5; PMID:8303295; https://doi.org/10.1126/science.8303295
  • Grove CA, deMasi F, Barrasa MI, Newburger D, Alkema MJ, Bulyk ML, Walhout AJ. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 2009; 138:314-27; PMID:19632181;https://doi.org/10.1016/j.cell.2009.04.058
  • Ritter AD, Shen Y, Bass JF, Jeyaraj S, Deplancke B, Mukhopadhyay A, Xu J, Driscoll M, Tissenbaum HA, Walhout AJ. Complex expression dynamics and robustness in C. elegans insulin networks. Genome Res 2013; 23:954-65; PMID:23539137; https://doi.org/10.1101/gr.150466.112
  • Martinez NJ, Ow MC, Reece-Hoyes J, Ambros V, Walhout AJ. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res 2008; 18:2005-15; PMID:18981266; https://doi.org/10.1101/gr.083055.108
  • Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, et al. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 2007; 5:e237; PMID:17850180;https://doi.org/10.1371/journal.pbio.0050237
  • Merritt C, Rasoloson D, Ko D, Seydoux G. 3′UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol 2008; 18:1476-82; https://doi.org/10.1016/j.cub.2008.08.013
  • Watson E, MacNeil LT, Arda HE, Zhu LJ, Walhout AJM. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 2013; 153:253-66; PMID:23540702; https://doi.org/10.1016/j.cell.2013.02.050
  • Pagano JM, Farley BM, McCoig LM, Ryder SP. Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J Biol Chem 2007; 282:8883-94; PMID:17264081; https://doi.org/10.1074/jbc.M700079200
  • Farley BM, Pagano JM, Ryder SP. RNA target specificity of the embryonic cell fate determinant POS-1. RNA 2008; 14:2685-97; PMID:18952820; https://doi.org/10.1261/rna.1256708
  • Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M. Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. RNA 2005; 11:447-58.
  • Opperman L, Hook B, DeFino M, Bernstein DS, Wickens M. A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat Struct Mol Biol 2005; 12:945-51; PMID:16244662; https://doi.org/10.1038/nsmb1010
  • Stumpf CR, Kimble J, Wickens M. A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. RNA 2008; 14:1550-7; PMID:18579869; https://doi.org/10.1261/rna.1095908
  • Koh YY, Opperman L, Stumpf C, Mandan A, Keles S, Wickens M. A single C. elegans PUF protein binds RNA in multiple modes. RNA 2009; 15:1090-9; PMID:19369425; https://doi.org/10.1261/rna.1545309
  • Hook B, Bernstein D, Zhang B, Wickens M. RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA 2005; 11:227-33; PMID:15613539; https://doi.org/10.1261/rna.7202705
  • Fuxman Bass JI, Sahni N, Shrestha S, Garcia-Gonzalez A, Mori A, Bhat N, Yi S, Hill DE, Vidal M, Walhout AJ. Human gene-centered transcription factor networks for enhancers and disease variants. Cell 2015; 161:661-73; PMID:25910213; https://doi.org/10.1016/j.cell.2015.03.003
  • Walhout AJM. What does biologically meaningful mean? A perspective on gene regulatory network validation. Genome Biol 2011; 12:109; PMID:21489330; https://doi.org/10.1186/gb-2011-12-4-109
  • Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 2003; 4:223; PMID:12844354; https://doi.org/10.1186/gb-2003-4-7-223
  • Dower K, Kuperwasser N, Merrikh H, Rosbash M. A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript. RNA 2004; 10:1888-99; PMID:15547135; https://doi.org/10.1261/rna.7166704
  • Okkema PG, Harrison SW, Plunger V, Aryana A, Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 1993; 135:385-404; PMID:8244003
  • Johansson HE, Dertinger D, LeCuyer KA, Behlen LS, Greef CH, Uhlenbeck OC. A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc Natl Acad Sci USA 1998; 95:9244-9; PMID:9689065; https://doi.org/10.1073/pnas.95.16.9244
  • Michel F, Schumperli D, Muller B. Specificities of Caenorhabditis elegans and human hairpin binding proteins for the first nucleotide in the histone mRNA hairpin loop. RNA 2000; 6:1539-50; PMID:11105754; https://doi.org/10.1017/S135583820000056X
  • Thompson BE, Bernstein DS, Bachorik JL, Petcherski AG, Wickens M, Kimble J. Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development 2005; 132:3471-81; PMID:16000383; https://doi.org/10.1242/dev.01921
  • Farley BM, Ryder SP. POS-1 and GLD-1 repress glp-1 translation through a conserved binding-site cluster. Mol Biol Cell 2012; 23:4473-83; PMID:23034181; https://doi.org/10.1091/mbc.E12-03-0216
  • Pagano JM, Farley BM, Essien KI, Ryder SP. RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci USA 2009; 106:20252-7; PMID:19915141; https://doi.org/10.1073/pnas.0907916106
  • Jadhav S, Rana M, Subramaniam K. Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development 2008; 135:1803-12; PMID:18417623; https://doi.org/10.1242/dev.013656
  • Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones SJ, Marra MA, Holt RA, Moerman DG, Hansen D. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics 2009; 10:213;; https://doi.org/10.1186/1471-2164-10-213
  • Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y. Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 2003; 130:2495-503; PMID:12702662; https://doi.org/10.1242/dev.00469
  • Hubstenberger A, Cameron C, Shtofman R, Gutman S, Evans TC. A network of PUF proteins and Ras signaling promote mRNA repression and oogenesis in C. elegans. Dev Biol 2012; 366:218-31; PMID:22542599; https://doi.org/10.1016/j.ydbio.2012.03.019
  • Lublin AL, Evans TC. The RNA binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis. Dev Biol 2007; 303:635-49; PMID:17234175; https://doi.org/10.1016/j.ydbio.2006.12.004
  • Kemmeren P, Sameith K, van de Pasch LA, Benschop JJ, Lenstra TL, Margaritis T, O'Duibhir E, Apweiler E, van Wageningen S, Ko CW, et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 2014; 157:740-52; PMID:24766815; https://doi.org/10.1016/j.cell.2014.02.054
  • Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette-Stamm L, Reece-Hoyes JS, Hope IA, et al. A gene-centered C. elegans protein-DNA interaction network. Cell 2006; 125:1193-205;PMID:16777607;https://doi.org/10.1016/j.cell.2006.04.038
  • Reece-Hoyes JS, Diallo A, Kent A, Shrestha S, Kadreppa S, Pesyna C, Dekker J, Myers CL, Walhout AJ. Enhanced yeast one-hybrid (eY1H) assays for high-throughput gene-centered regulatory network mapping. Nature Methods 2011; 8:1059-64; PMID:22037705; https://doi.org/10.1038/nmeth.1748
  • Yu H, Tardivo L, Tam S, Weiner E, Gebreab F, Fan C, Svrzikapa N, Hirozane-Kishikawa T, Rietman E, Yang X, et al. Next-generation sequencing to generate interactome datasets. Nat Methods 2011; 8:478-80; PMID:21516116; https://doi.org/10.1038/nmeth.1597
  • Blazie SM, Babb C, Wilky H, Rawls A, Park JG, Mangone M. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biol 2015; 13:4; https://doi.org/10.1186/s12915-015-0116-6
  • Orr-Weaver TL, Szostak JW, Rothstein RJ. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol 1983; 101:228-45; PMID:6310326
  • Alberti S, Gitler AD, Lindquist S. A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 2007; 24:913-9; PMID:17583893; https://doi.org/10.1002/yea.1502
  • Stellberger T, Hauser R, Baiker A, Pothineni VR, Haas J, Uetz P. Improving the yeast two-hybrid system with permutated fusions proteins: the Varicella Zoster Virus interactome. Proteome Science 2010; 8:8; PMID:20205919; https://doi.org/10.1186/1477-5956-8-8
  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004; 432:112-8; PMID:15525991; https://doi.org/10.1038/nature03060
  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236-40; PMID:24451626; https://doi.org/10.1093/bioinformatics/btu031
  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 2007; 35:W71-4; PMID:17485472; https://doi.org/10.1093/nar/gkm306
  • Walhout AJM, Temple GF, Brasch MA, Hartley JL, Lorson MA, van den Heuvel S, et al. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 2000; 328:575-92; PMID:11075367.
  • Walhout AJM, Vidal M. High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 2001; 24:297-306; PMID:11403578; https://doi.org/10.1006/meth.2001.1190
  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421:231-7; PMID:12529635; https://doi.org/10.1038/nature01278

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.