796
Views
3
CrossRef citations to date
0
Altmetric
Short Article

The utilization of selenocysteine-tRNA[Ser]Sec isoforms is regulated in part at the level of translation in vitro

, , , & ORCID Icon
Article: e1314240 | Received 22 Feb 2017, Accepted 28 Mar 2017, Published online: 25 Apr 2017

References

  • Carlson BA, Lee BJ, Tsuji PA, Tobe R, Park JM, Schweizer U, Gladyshev VN, & Hatfield DL. Selenocysteine tRNA [Ser] Sec: From Nonsense Suppressor tRNA to the Quintessential Constituent in Selenoprotein Biosynthesis. In: Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN, editors. Selenium: Its molecular biology and role in human health, New York, NY: Springer; 2016, p. 3-12
  • Kim LK, Matsufuji T, Matsufuji S, Carlson BA, Kim SS, Hatfield DL, Lee BJ. Methylation of the ribosyl moiety at position 34 of selenocysteine tRNA[Ser]Sec is governed by both primary and tertiary structure. RNA 2000; 6(9):1306-15; PMID:10999607; https://doi.org/10.1017/S1355838200000388
  • Diamond AM, Choi IS, Crain PF, Hashizume T, Pomerantz SC, Cruz R, Steer CJ, Hill KE, Burk RF, McCloskey JA., et al. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA([Ser]Sec). J Biol Chem 1993; 268(19):14215-23; PMID:8314785
  • Sturchler C, Westhof E, Carbon P, Krol A. Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNA(Sec). Nucleic Acids Res 1993; 21(5):1073-9; PMID:8464694; https://doi.org/10.1093/nar/21.5.1073
  • Klassen R, Ciftci A, Funk J, Bruch A, Butter F, Schaffrath R. tRNA anticodon loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Res 2016; 44(22):10946-59
  • Rezgui VAN, Tyagi K, Ranjan N, Konevega AL, Mittelstaet J, Rodnina MV, Peter M, Pedrioli PG. tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci 2013; 110(30):12289-94; https://doi.org/10.1073/pnas.1300781110
  • Tobe R, Naranjo-Suarez S, Everley RA, Carlson BA, Turanov AA, Tsuji PA, Yoo MH, Gygi SP, Gladyshev VN, Hatfield DL. High error rates in selenocysteine insertion in mammalian cells treated with the antibiotic doxycycline, chloramphenicol, or geneticin. J Biol Chem 2013; 288(21):14709-15; PMID:23589299; https://doi.org/10.1074/jbc.M112.446666
  • Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR. Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. J Biol Chem 2000; 275(36):28110-9; PMID:10821829
  • Moustafa ME, Carlson BA, El-Saadani MA, Kryukov GV, Sun QA, Harney JW, Hill KE, Combs GF, Feigenbaum L, Mansur DB, et al. Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Mol Cell Biol 2001; 21(11):3840-52; PMID:11340175; https://doi.org/10.1128/MCB.21.11.3840-3852.2001
  • Carlson BA, Xu XM, Gladyshev VN, Hatfield DL. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem 2005; 280(7):5542-8; PMID:15611090; https://doi.org/10.1074/jbc.M411725200
  • Kim JY, Carlson BA, Xu XM, Zeng Y, Chen S, Gladyshev VN, Lee BJ, Hatfield DL. Inhibition of selenocysteine tRNA([Ser]Sec) aminoacylation provides evidence that aminoacylation is required for regulatory methylation of this tRNA. Biochem Biophys Res Commun 2011; 409(4):814-19; PMID:21624347; https://doi.org/10.1016/j.bbrc.2011.05.096
  • Songe-Møller L, van den Born E, Leihne V, Vågbø CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes PO, Klungland A. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 2010; 30(7):1814-27; PMID:20123966; https://doi.org/10.1128/MCB.01602-09
  • Fradejas N, Carlson BA, Rijntjes E, Becker NP, Tobe R, Schweizer U. Mammalian Trit1 is a tRNA[Ser]Sec-isopentenyl-transferase required for full selenoprotein expression. Biochem J 2013; 450(2):427-32; PMID:23289710; https://doi.org/10.1042/BJ20121713
  • Carlson BA, Moustafa ME, Sengupta A, Schweizer U, Shrimali R, Rao M, Zhong N, Wang S, Feigenbaum L, Lee BJ, et al. Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34. J Biol Chem 2007; 282(45):32591-602; PMID:17848557; https://doi.org/10.1074/jbc.M707036200
  • Sunde RA. Selenoproteins: Hierarchy, Requirements, and Biomarkers. In: Hatfield DL, Gladyshev VN, Berry MJ, editors. Selenium: Its molecular biology and role in human health, New York, NY: Springer; 2012, p. 137-52
  • Moriarty PM, Reddy CC, Maquat LE. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol Cell Biol 1998; 18(5):2932-9; PMID:9566912; https://doi.org/10.1128/MCB.18.5.2932
  • Weiss SL, Sunde RA. Cis-acting elements are required for selenium regulation of glutathione peroxidase-1 mRNA levels. RNA 1998; 4(7):816-27; PMID:9671054; https://doi.org/10.1017/S1355838298971990
  • Sun X, Moriarty PM, Maquat LE. Nonsense-mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm depends on intron position. EMBO J 2000; 19(17):4734-44; PMID:10970865; https://doi.org/10.1093/emboj/19.17.4734
  • Hill KE, Lyons PR, Burk RF. Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem Biophys Res Commun 1992; 185(1):260-3; PMID:1599462; https://doi.org/10.1016/S0006-291X(05)80984-2
  • Lei XG, Evenson JK, Thompson KM, Sunde RA. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 1995; 125(6):1438-46; PMID:7782896
  • Sunde RA, Raines AM, Barnes KM, Evenson JK. Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 2009; 29(5):329-38; PMID:19076066; https://doi.org/10.1042/BSR20080146
  • Howard MT, Carlson BA, Anderson CB, Hatfield DL. Translational redefinition of UGA codons is regulated by selenium availability. J Biol Chem 2013; 288(27):19401-13; PMID:23696641; https://doi.org/10.1074/jbc.M113.481051
  • Chittum HS, Hill KE, Carlson BA, Lee BJ, Burk RF, Hatfield DL. Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner. Biochim Biophys Acta 1997; 1359(1):25-34; PMID:9398082; https://doi.org/10.1016/S0167-4889(97)00092-X
  • Hatfield D, Lee BJ, Hampton L, Diamond AM. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucleic Acids Res 1991; 19(4):939-43; PMID:2017375; https://doi.org/10.1093/nar/19.4.939
  • Kelmers AD, Heatherly DE. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem 1971; 44(2):486-95; PMID:4943341; https://doi.org/10.1016/0003-2697(71)90236-3
  • Hatfield D, Matthews CR, Rice M. Aminoacyl-transfer RNA populations in mammalian cells chromatographic profiles and patterns of codon recognition. Biochim Biophys Acta 1979; 564(3):414-23; PMID:259017; https://doi.org/10.1016/0005-2787(79)90032-7
  • Carlson BA, Hatfield DL. Transfer RNAs that insert selenocysteine. Methods Enzymol 2002; 347:24-39
  • Carlson BA, Novoselov SV, Kumaraswamy E, Lee BJ, Anver MR, Gladyshev VN, Hatfield DL. Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J Biol Chem 2004; 279(9):8011-7; PMID:14660662; https://doi.org/10.1074/jbc.M310470200
  • Mehta A, Rebsch CM, Kinzy SA, Fletcher JE, Copeland PR. Efficiency of mammalian selenocysteine incorporation. J Biol Chem 2004; 279(36):37852-9; PMID:15229221; https://doi.org/10.1074/jbc.M404639200
  • Gupta N, Demong LW, Banda S, Copeland PR. Reconstitution of selenocysteine incorporation reveals intrinsic regulation by SECIS elements. J Mol Biol 2013; 425(14):2415-22; PMID:23624110; https://doi.org/10.1016/j.jmb.2013.04.016
  • Shetty SP, Shah R, Copeland PR. Regulation of selenocysteine incorporation into the selenium transport protein, Selenoprotein P. J Biol Chem 2014; 289(36):25317-26; PMID:25063811; https://doi.org/10.1074/jbc.M114.590430
  • Sawasaki T, Ogasawara T, Morishita R, Endo Y. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 2002; 99(23):14652-7; PMID:12409616; https://doi.org/10.1073/pnas.232580399
  • Hadley KB, Sunde RA. Selenium regulation of thioredoxin reductase activity and mRNA levels in rat liver. J Nutr Biochem 2001; 12(12):693-702; PMID:12031252; https://doi.org/10.1016/S0955-2863(01)00189-9
  • Gladyshev VN, Factor VM, Housseau F, Hatfield DL. Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells. Biochem Biophys Res Commun 1998; 251(2):488-93; PMID:9792801; https://doi.org/10.1006/bbrc.1998.9495

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.