3,574
Views
69
CrossRef citations to date
0
Altmetric
Articles

Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation

ORCID Icon, , & ORCID Icon
Pages 730-739 | Received 26 Mar 2017, Accepted 29 May 2017, Published online: 15 Jun 2017

References

  • Haase H, Overbeck S, Rink L. Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol. 2008;43:394–408.
  • Jansen J, Karges W, Rink L. Zinc and diabetes–clinical links and molecular mechanisms. J Nutr Biochem. 2009;20:399–417.
  • Sun Q, van Dam RM, Willett WC, et al. Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009;32:629–634.
  • Hasanah AN, Pessagno F, Kartasasmita RE, et al. Tetrabutylammonium methacrylate as a novel receptor for selective extraction of sulphonylurea drugs from biological fluids using molecular imprinting. J Mat Chem B. 2015;3:8577–8583.
  • Rungby J. Zinc, zinc transporters and diabetes. Diabetologia. 2010;53:1549–1551.
  • Smidt K, Jessen N, Petersen AB, et al. SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One. 2009;4:e5684.
  • Prasad AS. Biochemistry of Zinc. New York (NY): Springer Science & Business Media; 2013.
  • Feshani AM, Kouhsari SM, Mohammadi S. Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J Ethnopharmacol. 2011;133:67–74.
  • Latti AK, Kainulainen PS, Hayirlioglu-Ayaz S, et al. Characterization of anthocyanins in caucasian blueberries (Vaccinium arctostaphylos L.) native to Turkey. J Agri Food Chem. 2009;57:5244–5249.
  • Soltani R, Hakimi M, Asgary S, et al. Evaluation of the effects of Vaccinium arctostaphylos L. Fruit extract on serum lipids and hs-CRP levels and oxidative stress in adult patients with hyperlipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Alternat Med. 2014;2014:217451.
  • Bansal SS, Goel M, Aqil F, et al. Advanced drug-delivery systems of curcumin for cancer chemoprevention. Cancer Prevent Res (Philadelphia, Pa). 2011;4:1158–1171.
  • Raj KT, Gulam MK, Parajuli-Baral K, et al. Herbal medicine incorporated nanoparticles: advancements in herbal treatment. Asian J Biomed Pharm Sci 2013;3:7–14.
  • Karthick V, Kumar VG, Dhas TS, et al. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-an in vivo approach. Colloids Surf B Biointerfaces. 2014;122:505–511.
  • Sharma R, Gupta U, Garg NK, et al. Surface engineered and ligand anchored nanobioconjugate: an effective therapeutic approach for oral insulin delivery in experimental diabetic rats. Colloids Surf B Biointerfaces. 2015;127:172–181.
  • Senapati S, Ahmad A, Khan MI, et al. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small. 2005;1:517–520.
  • Kumar VB, Kumar K, Gedanken A, et al. Facile synthesis of self-assembled spherical and mesoporous dandelion capsules of ZnO: efficient carrier for DNA and anti-cancer drugs. J Mater Chem B. 2014;2:3956–3964.
  • Zeng K, Li J, Zhang Z, et al. Lipid-coated ZnO nanoparticles as lymphatic-targeted drug carriers: study on cell-specific toxicity in vitro and lymphatic targeting in vivo. J Mat Chem B. 2015;3:5249–5260.
  • Erden PE, Zeybek B, Pekyardimc Ş, et al. Amperometric carbon paste enzyme electrodes with Fe3O4 nanoparticles and 1,4-Benzoquinone for glucose determination. Artificial Cells Nanomed Biotechnol. 2013;41:165–171.
  • Sutradhar P, Saha M. Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J Exp Nanosci. 2016;11:314–327.
  • Zheng Y, Fu L, Han F, et al. Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem Lett Rev. 2015;8:59–63.
  • Velmurugan P, Park J-H, Lee S-M, et al. Phytofabrication of bioinspired zinc oxide nanocrystals for biomedical application. Artificial Cells Nanomed Biotechnol. 2016;44:1529–1536.
  • Rasmussen JW, Martinez E, Louka P, et al. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7:1063–1077.
  • Padalia H, Chanda S. Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract. Artificial Cells Nanomed Biotechnol. 2017. DOI:10.1080/21691401.2017.1282868
  • Sharma N, Jandaik S, Kumar S, et al. Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. J Exp Nanosci. 2016;11:54–71.
  • Das D, Nath BC, Phukon P, et al. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surfaces B, Biointerfaces. 2013;111:556–560.
  • Nagajyothi PC, Sreekanth TVM, Tettey CO, et al. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg Med Chem Lett. 2014;24:4298–4303.
  • Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15:2015–2023.
  • El-Mekawy RE, Jassas RS. Recent trends in smart and flexible three-dimensional cross-linked polymers: synthesis of chitosan-ZnO nanocomposite hydrogels for insulin drug delivery. MedChemComm. 2017;8:897–906.
  • Stankic S, Suman S, Haque F, et al. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol. 2016;14:73.
  • Yang Y, Chen H, Zhao B, et al. Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. J Crystal Growth. 2004;263:447–453.
  • Cheng B, Samulski ET. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem Commun. 2004;986–987.
  • Stanković A, Dimitrijević S, Uskoković D. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surfaces B: Biointerfaces. 2013;102:21–28.
  • Znaidi L. Sol–gel-deposited ZnO thin films: a review. Mat Sci Eng: B. 2010;174:18–30.
  • Mishra SK, Srivastava RK, Prakash S, et al. Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto-Electronics Rev. 2010;18:467–473.
  • Nagvenkar AP, Deokar A, Perelshtein I, et al. A one-step sonochemical synthesis of stable ZnO-PVA nanocolloid as a potential biocidal agent. J Mat Chem B. 2016;4:2124–2132.
  • Sangshetti JN, Dharmadhikari PP, Chouthe RS, et al. Microwave assisted nano (ZnO–TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial agents. Bioorg Med Chem Lett. 2013;23:2250–2253.
  • Zhang R, Fan L, Fang Y, et al. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J Mater Chem. 2008;18:4964–4970.
  • Ramazani SAA, Tamsilian Y, Shaban M. Synthesis of nanomaterials. In: Parameswaranpillai J, Hameed N, Kurian T, et al. Nanocomposite Materials: synthesis, properties and applications. FL: CRC Press; 2016. p. 37–80.
  • Bala N, Saha S, Chakraborty M, et al. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015;5:4993–5003.
  • Velmurugan P, Park J-H, Lee S-M, et al. Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications. Artificial Cells Nanomed Biotechnol. 2016;44:1537–1543.
  • Buazar F, Bavi M, Kroushawi F, et al. Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles. J Exp Nanosci. 2016;11:175–184.
  • Shanmugasundaram T, Balagurunathan R. Bio-medically active zinc oxide nanoparticles synthesized by using extremophilic actinobacterium, Streptomyces sp. (MA30) and its characterization. Artificial Cells Nanomed Biotechnol. 2017. DOI:10.1080/21691401.2016.1260577
  • Ahmed S, Chaudhry SA, Ikram S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J Photochem Photobiol B. 2017;166:272–284.
  • Vishwakarma K. Green synthesis of ZnO nanoparticles using abrus precatorius seeds extract and their characterization [dissertation]. 2013. Available from: http://ethesis.nitrkl.ac.in/5012/
  • Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. 2014;2014:925494.
  • Mishra BG, Rao GR. Promoting effect of ceria on the physicochemical and catalytic properties of CeO2?ZnO composite oxide catalysts. J Mol Catal A: Chem. 2006;243:204–213.
  • Javed R, Usman M, Tabassum S, et al. Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles. Appl Surface Sci. 2016;386:319–326.
  • Kadam A, Dhabbe R, Gophane A, et al. Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange. J Photochem Photobiol B. 2016;154:24–33.
  • Shekofteh-Gohari M, Habibi-Yangjeh A. Fabrication of novel magnetically separable visible-light-driven photocatalysts through photosensitization of Fe3O4/ZnO with CuWO4. J Industrial Eng Chem. 2016;44:174–184.
  • Ayaz FA, Hayirlioglu-Ayaz S, Gruz J, et al. Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) Fruit by HPLC-MS. J Agric Food Chem. 2005;53:8116–8122.
  • Lee KM, Lai CW, Ngai KS, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 2016;88:428–448.
  • Rink L, Kirchner H. Zinc-altered immune function and cytokine production. J Nutr. 2000;130:1407S–1411S.
  • Garg VK, Gupta R, Goyal RK. Hypozincemia in diabetes mellitus. J Assoc Physicians India. 1994;42:720–721.
  • Kianbakht S, Hajiaghaee R. Anti-hyperglycemic effects of Vaccinium arctostaphylos L. fruit and leaf extracts in alloxan-induced diabetic rats. J Med Plants. 2013;1:43–50.
  • Murray M. Bilberry (Vaccinium myrtillus). Am J Nat Med. 1997;4:18–22.
  • Ong C, Lim JZ, Ng CT, et al. Silver nanoparticles in cancer: therapeutic efficacy and toxicity. CMC. 2013;20:772–781.
  • Ong KC, Khoo HE. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci. 2000;67:1695–1705.
  • Salehi P, Asghari B, Esmaeili MA, et al. Glucosidase and-amylase inhibitory effect and antioxidant activity of ten plant extracts traditionally used in Iran for diabetes. J Med Plants Res. 2013;7:257–266.
  • Buse JB, Tan MH, Prince MJ, et al. The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. Diabetes Obes Metab. 2004;6:133–156.
  • Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Uropean Heart J. 2011;32:1345–1361.
  • Vardatsikos G, Pandey NR, Srivastava AK. Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem. 2013;120:8–17.
  • Grimm JRH, Flack JM, Grandits GA. Long-term effects on plasma lipids of diet and drugs to treat hypertension. Treatment of Mild Hypertension Study (TOMHS) Research Group. JAMA. 1996;275:1549–1556.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.