1,501
Views
41
CrossRef citations to date
0
Altmetric
Articles

Watercress-based electrospun nanofibrous scaffolds enhance proliferation and stemness preservation of human adipose-derived stem cells

, , , , , , , & show all
Pages 819-830 | Received 08 Apr 2017, Accepted 09 Jun 2017, Published online: 11 Jul 2017

References

  • Alizadeh E, Zarghami N, Eslaminejad MB, et al. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2016;44:157–164.
  • Hoseinzadeh S, Atashi A, Soleimani M, et al. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In Vitro Cell Dev Biol Anim. 2016;52:479–487.
  • Zhang D, Kilian KA. The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials 2013;34:3962–3969.
  • Pilehvar-Soltanahmadi Y, Nouri M, Martino MM, et al. Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on Emu oil based electrospun nanofibrous mat. Exp Cell Res. Forthcoming. [cited 2017 May 17]. doi: 10.1016/j.yexcr.2017.05.015
  • Saei Arezoumand K, Alizadeh E, Pilehvar-Soltanahmadi Y, et al. An overview on different strategies for the stemness maintenance of MSCs. Artif Cells Nanomed Biotechnol. Forthcoming. [cited 2016 Nov 3]. doi: http://dx.doi.org/10.1080/21691401.2016.1246452
  • Riordan NH, Ichim TE, Min WP, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009;7:1.
  • Baer PC, Griesche N, Luttmann W, et al. Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy 2010;12:96–106.
  • Yan X-Z, Both SK, Yang P-S, et al. Human periodontal ligament derived progenitor cells: effect of STRO-1 cell sorting and Wnt3a treatment on cell behavior. BioMed Res Int. 2014;2014:145423.
  • Denu RA, Hematti P. Effects of oxidative stress on mesenchymal stem cell biology. Oxid Med Cel Longev. 2016;2016:2989076.
  • Sart S, Song L, Li Y. Controlling redox status for stem cell survival, expansion and differentiation. Oxid Med Cel Longev. 2015;2015:105135.
  • Zeng W, Xiao J, Zheng G, et al. Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Sci Rep. 2015;5:11100.
  • Tomlinson TR, Akerele O. Medicinal plants: their role in health and biodiversity. Philadelphia (PA): University of Pennsylvania press; 2015.
  • Suganya S, Venugopal J, Ramakrishna S, et al. Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration. J Appl Polym Sci. 2014;131:39835.
  • Jin G, Prabhakaran MP, Kai D, et al. Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials. 2013;34:724–734.
  • Schilling T, Ebert R, Raaijmakers N, et al. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol. 2014;139:252–261.
  • Hyun H, Park H, Jeong J, et al. Effects of watercress containing rutin and rutin alone on the proliferation and osteogenic differentiation of human osteoblast-like MG-63 cells. Korean J Physiol Pharmacol. 2014;18:347–352.
  • Byun MR, Sung MK, Kim AR, et al. (-)-Epicatechin gallate (ECG) stimulates osteoblast differentiation via Runt-related transcription factor 2 (RUNX2) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated transcriptional activation. J Biol Chem. 2014;289:9926–9935.
  • Pourhassan-Moghaddam M, Zarghami N, Mohsenifar A, et al. Watercress-based gold nanoparticles: biosynthesis, mechanism of formation and study of their biocompatibility in vitro. Micro Nan Let. 2014;9:345–350.
  • Ozen T. Investigation of antioxidant properties of Nasturtium officinale (watercress) leaf extracts. Pol Pharm. 2008;66:187–193.
  • Grégio AMT. Experimental confirmation of the utility of Nasturtium officinale sed mpirically as outh esion epairing romotor. Clin Exp Pharmacol Physiol. 2016;5:201.
  • Sadeghi H, Mostafazadeh M, Sadeghi H, et al. In vivo anti-inflammatory properties of aerial parts of Nasturtium officinale. Pharm Biol. 2014;52:169–174.
  • Deldar Y, Pilehvar-Soltanahmadi Y, Dadashpour M, et al. An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif Cells Nanomed Biotechnol. Forthcoming. [cited 2017 June]. doi: 10.1080/21691401.2017.1337022
  • Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, et al. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother. 2017;90:85–92.
  • Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12:207–218.
  • Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, et al. An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif Cells Nanomed Biotechnol. 2016;44:1350–1364.
  • Prakash S, Khan A, Paul A. Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential. Expert Opin Biol Ther. 2010;10:1649–1661.
  • Eatemadi A, Daraee H, Zarghami N, et al. Nanofiber: synthesis and biomedical applications. Artif Cells Nanomed Biotechnol. 2016;44:111–121.
  • Zarghami N, Sheervalilou R, Fattahi A, et al. An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini Red Med Chem. Forthcoming. [cited 2017 Mar 8]. doi: 10.2174/1389557517666170308112147
  • Binulal N, Natarajan A, Menon D, et al. PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014;25:325–340.
  • Liu H, Ding X, Zhou G, et al. Electrospinning of nanofibers for tissue engineering applications. J Nanomate. 2013;2013:3.
  • Pourhassan-Moghaddam M, Zarghami N, Mohsenifar A, et al. Watercress-based gold nanoparticles: biosynthesis, mechanism of formation and study of their biocompatibility in vitro. Micro Nan Let. 2014;9:345–350.
  • Montazeri M, Sadeghizadeh M, Pilehvar-Soltanahmadi Y, et al. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int J Pharm. 2016;509:244–254.
  • Valizadeh A, Bakhtiary M, Akbarzadeh A, et al. Preparation and characterization of novel electrospun poly (ε-caprolactone)-based nanofibrous scaffolds. Artif Cells Nanomed Biotechnol. 2016;44:504–509.
  • Elamparithi A, Punnoose AM, Kuruvilla S, et al. Electrospun polycaprolactone matrices with tensile properties suitable for soft tissue engineering. Artif Cells Nanomedi Biotechnol. 2016;44:878–884.
  • Srivastava S, Bankar R, Roy P. Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine 2013;20:(8):683–90.
  • Spínola V, Pinto J, Castilho PC. In vitro studies on the effect of watercress juice on digestive enzymes relevant to type 2 diabetes and obesity and antioxidant activity. J Food Biochem. 2017;41:e12335.
  • Boligon AA, Janovik V, Boligon AA, et al. HPLC analysis of polyphenolic compounds and antioxidant activity in Nasturtium officinale. Int J Food Prop. 2013;16:61–69.
  • Abdul DA, Majeed SN, Ameen BH. Antioxidant activity, total phenolic content and antimicrobial activity of two medicinal plants from Sulaimani City, Iraqi Kurdistan Region. Adv Life Sci Technol. 2014;18:65–71.
  • Giallourou N, Oruna-Concha MJ, Harbourne N. Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Food Chem. 2016;212:411–419.
  • Rodrigues L, Silva I, Poejo J, et al. Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction. RSC Adv. 2016;6:30905–30918.
  • Aires A, Carvalho R, Rosa EA, et al. Phytochemical characterization and antioxidant properties of baby-leaf watercress produced under organic production system. CyTA-J Food. 2013;11:343–351.
  • Bahramikia S, Ardestani A, Yazdanparast R. Protective effects of four Iranian medicinal plants against free radical-mediated protein oxidation. Food Chem. 2009;115:37–42.
  • Yang S-R, Park J-R, Kang K-S. Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. Oxid Med Cell Longev. 2015;2015:486263.
  • Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19:1885–1893.
  • Orciani M, Gorbi S, Benedetti M, et al. Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: different mechanisms of protection and cell selection. Free Radic Biol Med. 2010;49:830–838.
  • Ko E, Lee KY, Hwang DS. Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev. 2011;21:1877–1886.
  • Shahani S, Behzadfar F, Jahani D, et al. Antioxidant and anti-inflammatory effects of Nasturtium officinale involved in attenuation of gentamicin-induced nephrotoxicity. Toxicol Mech Met. 2016;27:107–114.
  • Natanzi ARE, Ghahremani MH, Esfehani HRM, et al. Evaluation of antihepatotoxic effect of watercress extract and its fractions in rats. Int J Pharm. 2010;6:896–902.
  • Fatimah SS, Tan GC, Chua KH, et al. Effects of epidermal growth factor on the proliferation and cell cycle regulation of cultured human amnion epithelial cells. J Biosci Bioeng. 2012;114:220–227.
  • Bhattacharya B, Miura T, Brandenberger R, et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood. 2004;103:2956–2964.
  • Marqués-Torrejón MÁ, Porlan E, Banito A, et al. Cyclin-Dependent Kinase Inhibitor p21 Controls Adult Neural Stem Cell Expansion by Regulating Sox2 Gene Expression. Cell Stem Cell. 2013;12:88–100.
  • Fatimah SS, Tan GC, Chua K, et al. Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells. Microvasc Res. 2013;86:21–29.
  • Shi W, Wang H, Pan G, et al. Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem. 2006;281:23319–23325.
  • Shi G, Jin Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther. 2010;1:39.
  • Wang Z, Oron E, Nelson B, et al. Distinct Lineage Specification Roles for NANOG, OCT4, and SOX2 in Human Embryonic Stem Cells. Cell Stem Cell. 2012;10:440–454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.