4,094
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Nanomedicines: a theranostic approach for hepatocellular carcinoma

, &
Pages 680-690 | Received 20 May 2017, Accepted 28 Aug 2017, Published online: 08 Sep 2017

References

  • Sharma B, Sharma U. Hepatoprotective activity of some indigenous plants. Int J Pharma Tech Res. 2009;1:1330–1334.
  • Chinnamaruthu SK, Sellappan M. Selection of an optimal method for the preparation of dual loaded flavono polymeric nanoparticle using analytical hierarchy process. Int Cur Pharm J. 2014;3:247–253.
  • Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;3:151–161.
  • Usmani A, Mujahid M, Khushtar M, et al. Hepatoprotective effect of Anacyclus pyrethrum Linn. against antitubercular drug-induced hepatotoxicity in SD rats. J Complement Integr Med. 2016;13:295–300.
  • Usmani A, Mishra A. Current updates on risk factors of hepatocellular carcinoma. Res Rev. 2017;8:23–31.
  • Theise ND, Chen C, Kew MK. Liver cancer. In Stewart BW, Wild CP, editors. World Cancer Report. Lyon (France): International Agency for Research on Cancer; 2014. p. 578–580.
  • Ferenci P, Fried M, Labrecque D, et al. World Gastroenterology Organisation Guideline. Hepatocellular carcinoma (HCC): a global perspective. J Gastrointestin Liver Dis. 2010;19:311–317.
  • Hung CH, Chiu YC, Chen CH, et al. MicroRNAs in hepatocellular carcinoma: carcinogenesis, progression, and therapeutic target. Biomed Res Int. 2014;2014:486–507.
  • El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–2576
  • Contran RS, Kumar V, Robbins SL. Pathologic basis of disease. Philadelphia (PA): Saunders Publication; 2001.
  • Okazaki N. Evaluation of the prognosis for small hepatocellular carcinoma based on tumor volume doubling time. A preliminary report. Cancer. 1989;63:2207–2210.
  • Nakeeb A, Pitt HA, Sohn TA, et al. Cholangiocarcinoma: a spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224:463–475.
  • Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383:2168–2179.
  • Andersen NJ, Froman RE, Kitchell BE, et al. Clinical and molecular biology of angiosarcoma, soft tissue tumors. InTech; [Internet]; 2011. Available from: http://www.intechopen.com/books/soft-tissue-tumors/clinical-and-molecular-biology-of-angiosarcoma.
  • Chien CY, Hwang CC, Yeh C, et al. Liver angiosarcoma, a rare liver malignancy, presented with intraabdominal bleeding due to rupture-a case report. World J Surg Onc. 2012;10:23.
  • Faraj W, Dar F, Marangoni G, et al. Liver transplantation for hepatoblastoma. Liver Transpl. 2008;14:1614–1619.
  • Hiyama E. Pediatric hepatoblastoma: diagnosis and treatment. Transl Pediatr. 2014;3:293–299.
  • Mikhail S, Cosgrove D, Zeidan A. Hepatocellular carcinoma: systemic therapies and future perspectives. Expert Rev Anticancer Ther. 2014;14:1205–1218.
  • Zhang C, Zeng T, Zhao X, et al. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats. Int J Biol Sci. 2012;8:363–374.
  • Barbara L. Natural history of small untreated hepatocellular carcinoma in cirrhosis: a multivariate analysis of prognostic factors of tumor growth rate and patient survival. Hepatology. 1992;16:132–3137.
  • Gupta C, Vikram A, Tripathi DN, et al. Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytother Res. 2010;24:119–128.
  • Hai W, Kim C, Song S, et al. Study on mechanism of multistep hepatotumorigenesis in rat: development of hepatotumorigenesis. J Vet Sci. 2001;2:53–58.
  • Mandal AK, Das S, Mitra M, et al. Vesicular flavonoid in combating diethylnitrosamine induced hepatocarcinoma in rat model. Exp Hematol Oncol. 2008;7:123–133.
  • Van IC, Hussain SM, Terkivatan T, et al. Stepwise carcinogenesis of hepatocellular carcinoma in the cirrhotic liver: demonstration on serial MR imaging. J Magn Reson Imaging. 2006;24:1071–1080.
  • Diaz MR, Mejia PE. Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals. 2013;6:1361–1380.
  • Cuenca AG, Jiang H, Hochwald SN. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006;107:459–466.
  • Barratt G. Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci. 2003;60:21–37.
  • Hassan SK, Mousa AM, Eshak MG, et al. Therapeutic and chemopreventive effects of nano curcumin against diethylnitrosamine induced hepatocellular carcinoma in rats. Int J Pharm Pharmasci. 2014;6:54–62.
  • Sarika PR, James NR, Kumar PR, et al. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydr Polym. 2015;10:167–174.
  • Anirudhan TS, Binusreejayan. Dextran based nanosized carrier for the controlled and targeted delivery of curcumin to liver cancer cells. Int J Bio Macromolecules. 2016;88:222–235.
  • Jeon MJ, Gordon AC, Larson AC, et al. Transcatheter intra-arterial infusion of doxorubicin loaded porous magnetic nano-clusters with iodinated oil for the treatment of liver cancer. Biomaterials. 2016;88:25–33.
  • Malarvizhi GL, Retnakumari AP, Nair S, et al. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomedicine. 2014;10:1649–1659.
  • Chang JE, Yoon IS, Sun PL, et al. Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer. J Photochem Photobiol B. 2014;140:49–56.
  • Kundu B, Ghosh D, Sinha MK, et al. Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: an animal model. Ceramics Int. 2013;39:9557–9566.
  • Ji Z, Lin G, Lu Q, et al. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci. 2012;365:143–149.
  • Arunraj TR, Rejinold NS, Kumar NA, et al. Bio-responsive chitin-poly(l-lactic acid) composite nanogels for liver cancer. Colloids Surf B Biointerfaces. 2014;113:394–402.
  • Harisa GI, Mohamed M, Badran MM, et al. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer. Saudi Pharm J. 2016;24:74–81.
  • Sun DW, Pan GZ, Hao L, et al. Improved antitumor activity of epirubicin-loaded CXCR4-targeted polymeric nanoparticles in liver cancers. Int J Pharm. 2016;500:54–61.
  • Wu B, Liang Y, Tan Y, et al. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer. Materials Sci Eng. 2016;59:792–800.
  • Zhu D, Tao W Zang H, et al. Docetaxel-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomaterialia. 2016;30:144–154.
  • Chen F, Zhang J, Wang L, et al. Tumor pH (e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale. 2015;7:15763–15779.
  • Xiao Y, Liu Y, Yang S, et al. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment. Colloids Surf B Biointerfaces. 2016;141:83–92.
  • Li YJ, Dong M, Kong FM, et al. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int J Pharm. 2015;489:83.
  • Guan M, Zhou Y, Zhu QL, et al. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomedicine. 2012;8:1172–1181.
  • Ma X, Hui H, Jin Y, et al. Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and it’s in vivo bioluminescence tomographic evaluation. Biomaterials. 2016;87:46–56.
  • Yin D, Yang Y, Cai H, et al. Gambogic acid-loaded electrosprayed particles for site specific treatment of hepatocellular carcinoma. Mol Pharmaceutics. 2014;11:4107–4117.
  • Kassas HY, Attia AA. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiell acapillacea on the HepG2 cell line. Asian Pac J Cancer Prev. 2014;15:1299–1306.
  • Jin C, Bai L, Wu H, et al. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res. 2009;26:1776–1784.
  • Jin C, Bai L, Lin L, et al. Paclitaxel-loaded nanoparticles decorated with bivalent fragment hAb18 F(ab’)2 and cell penetrating peptide for improved therapeutic effect on hepatocellular carcinoma. Artif Cells Nanomed Biotechnol. 2017. DOI:10.1080/21691401.2017.1360325
  • Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84:131–141.
  • Ahmad U, Akhtar J, Singh SP, et al. Silymarin nanoemulsion against human hepatocellular carcinoma: development and optimization. Artif Cells Nanomed Biotechnol. 2017. DOI: https://doi.org/10.1080/21691401.2017.1324465
  • Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev. 2001;46:169–185.
  • Ott PA, Carvajal RD, Taskar NP, et al. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest New Drugs. 2013;31:425–434.
  • Seymour LW, Ferry DR, Anderson D, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20:1668–1676.
  • Bedikian AY, DeConti RC, Conry R, et al. Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann Oncol. 2011;22:787–793.
  • Tabernero J, Shapiro GI, LoRusso PM et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3:406–417.
  • Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 2013;31:577.
  • Zhou Q, Sun X, Zeng L. A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomed Nanotechnol Biol Med. 2009;5:419–423.
  • Ghamande S, Lin CC, Cho DC, et al. A phase 1 open-label, sequential dose-escalation study investigating the safety, tolerability and pharmacokinetics of intravenous TLC388 administered to patients with advanced solid tumors. Invest New Drugs. 2014;32:445–451.
  • Barraud L, Merle P, Soma E, et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol. 2005;42:736–743.
  • Hare JI, Lammers T, Marianne B, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.