1,819
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inhibitory effects of Curcumae Radix carbonisata-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice

, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 23-34 | Received 01 Dec 2022, Accepted 18 Jul 2023, Published online: 30 Nov 2023

References

  • Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020;9(4):875. doi: 10.3390/cells9040875.
  • Khatun M, Ray RB. Mechanisms underlying hepatitis C virus-associated hepatic fibrosis. Cells. 2019;8(10):1249. doi: 10.3390/cells8101249.
  • Li H. Advances in anti hepatic fibrotic therapy with traditional Chinese medicine herbal formula. J Ethnopharmacol. 2020;251:112442. doi: 10.1016/j.jep.2019.112442.
  • Mu M, Zuo S, Wu RM, et al. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/smad signaling pathway. Drug Des Devel Ther. 2019;13:1819–4115. doi: 10.2147/DDDT.S186726.
  • Wang P, Cui Y, Wang J, et al. Mesenchymal stem cells protect against acetaminophen hepatotoxicity by secreting regenerative cytokine hepatocyte growth factor. Stem Cell Res Ther. 2022;13(1):94. doi: 10.1186/s13287-022-02754-x.
  • Biolato M, Bianco A, Lucchini M, et al. The disease-modifying therapies of relapsing-remitting multiple sclerosis and liver injury: a narrative review. CNS Drugs. 2021;35(8):861–880. doi: 10.1007/s40263-021-00842-9.
  • Liu H, Lv X, Qian J, et al. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near-infrared imaging-guided combined photo-chemotherapy. ACS Nano. 2020;14(10):13304–13315. doi: 10.1021/acsnano.0c05143.
  • Zhao N, Wang Y, Hou S, et al. Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Mikrochim Acta. 2020;187(6):351. doi: 10.1007/s00604-020-04328-1.
  • Wang C, Guan W, Peng J, et al. Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater. 2020;103:247–258. doi: 10.1016/j.actbio.2019.12.015.
  • Tiron A, Stan CS, Luta G, et al. Manganese-doped N-hydroxyphthalimide-derived carbon dots-theranostics applications in experimental breast cancer models. Pharmaceutics. 2021;13(11):1982. doi: 10.3390/pharmaceutics13111982.
  • Tejwan N, Saha SK, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci. 2020;275:102046. doi: 10.1016/j.cis.2019.102046.
  • Zhao P, Jin B, Zhang Q, et al. High-quality carbon nitride quantum dots on photoluminescence: effect of carbon sources. Langmuir. 2021;37(5):1760–1767. doi: 10.1021/acs.langmuir.0c02966.
  • Cui F, Sun J, Ji J, et al. Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. J Hazard Mater. 2021;406:124330. doi: 10.1016/j.jhazmat.2020.124330.
  • Cheng J, Zhang M, Sun Z, et al. Hemostatic and hepatoprotective bioactivity of Junci medulla carbonisata-derived carbon dots. Nanomedicine. 2019;14(4):431–446. doi: 10.2217/nnm-2018-0285.
  • Zhang M, Cheng J, Hu J, et al. Green phellodendri chinensis cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. J Nanobiotechnology. 2021;19(1):105. doi: 10.1186/s12951-021-00847-y.
  • Zhao Y, Zhang Y, Kong H, et al. Protective effects of carbon dots derived from armeniacae semen Amarum carbonisata against acute lung injury induced by lipopolysaccharides in rats. Int J Nanomedicine. 2022;17:1–14. doi: 10.2147/IJN.S338886.
  • Sun Z, Lu F, Cheng J, et al. Hypoglycemic bioactivity of novel eco-friendly carbon dots derived from traditional Chinese medicine. J Biomed Nanotechnol. 2018;14(12):2146–2155. doi: 10.1166/jbn.2018.2653.
  • Bajpai VK, Khan I, Shukla S, et al. Multifunctional N-P-doped carbon dots for regulation of apoptosis and autophagy in B16F10 melanoma cancer cells and in vitro imaging applications. Theranostics. 2020;10(17):7841–7856. doi: 10.7150/thno.42291.
  • Wang H, Zhang M, Ma Y, et al. Selective inactivation of gram-negative bacteria by carbon dots derived from natural biomass: Artemisia argyi leaves. J Mater Chem B. 2020;8(13):2666–2672. doi: 10.1039/c9tb02735a.
  • Tong T, Hu H, Zhou J, et al. Glycyrrhizic-Acid-Based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small. 2020;16(13):e1906206. doi: 10.1002/smll.201906206.
  • Liu X, Liu W, Ding C, et al. Taxifolin, extracted from waste Larix olgensis roots, attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR and TGF-β1/smads signaling pathways. Drug Des Devel Ther. 2021;15:871–887. doi: 10.2147/DDDT.S281369.
  • Xin Q, Shah H, Xie W, et al. Preparation of blue- and green-emissive nitrogen-doped graphene quantum dots from graphite and their application in bioimaging. Mater Sci Eng C Mater Biol Appl. 2021;119:111642. doi: 10.1016/j.msec.2020.111642.
  • Jahanbakhshi M, Habibi B. A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: application to electroanalytical determination of H2O2 in fetal bovine serum. Biosens Bioelectron. 2016;81:143–150. doi: 10.1016/j.bios.2016.02.064.
  • Wang T, Luo H, Jing X, et al. Synthesis of fluorescent carbon dots and their application in ascorbic acid detection. Molecules. 2021;26(5):1246. doi: 10.3390/molecules26051246.
  • Manchala S, Gandamalla A, Vempuluru NR, et al. High potential and robust ternary LaFeO3/CdS/carbon quantum dots nanocomposite for photocatalytic H2 evolution under sunlight illumination. J Colloid Interface Sci. 2021;583:255–266. doi: 10.1016/j.jcis.2020.08.125.
  • Chandrasekaran P, Arul V, Sethuraman MG. Ecofriendly synthesis of fluorescent nitrogen-doped carbon dots from Coccinia grandis and its efficient catalytic application in the reduction of methyl orange. J Fluoresc. 2020;30(1):103–112. doi: 10.1007/s10895-019-02474-1.
  • Hoseini AA, Farhadi S, Zabardasti A, et al. A novel n-type CdS nanorods/p-type LaFeO3 heterojunction nanocomposite with enhanced visible-light photocatalytic performance. RSC Adv. 2019;9(42):24489–24504. doi: 10.1039/c9ra04265b.
  • Mishra V, Patil A, Thakur S, et al. Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today. 2018;23(6):1219–1232. doi: 10.1016/j.drudis.2018.01.006.
  • Sri S, Kumar R, Panda AK, et al. Highly biocompatible, fluorescence, and zwitterionic carbon dots as a novel approach for bioimaging applications in cancerous cells. ACS Appl Mater Interfaces. 2018;10(44):37835–37845. doi: 10.1021/acsami.8b13217.
  • Luo WK, Zhang LL, Yang ZY, et al. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology. 2021;19(1):320. doi: 10.1186/s12951-021-01072-3.
  • Li D, Xu KY, Zhao WP, et al. Chinese medicinal herb-derived carbon dots for common diseases: efficacies and potential mechanisms. Front Pharmacol. 2022;13:815479. doi: 10.3389/fphar.2022.815479.
  • Yan X, Zhao Y, Luo J, et al. Hemostatic bioactivity of novel pollen Typhae carbonisata-derived carbon quantum dots. J Nanobiotechnology. 2017;15(1):60. doi: 10.1186/s12951-017-0296-z.
  • Zhang Y, Wang S, Lu F, et al. The neuroprotective effect of pretreatment with carbon dots from Crinis carbonisatus (carbonized human hair) against cerebral ischemia reperfusion injury. J Nanobiotechnology. 2021;19(1):257. doi: 10.1186/s12951-021-00908-2.
  • Hu J, Luo J, Zhang M, et al. Protective effects of radix Sophorae flavescentis carbonisata-based carbon dots against ethanol-induced acute gastric ulcer in rats: anti-Inflammatory and antioxidant activities. Int J Nanomedicine. 2021;16:2461–2475. doi: 10.2147/IJN.S289515.
  • Elpek GO. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol. 2014;20(23):7260–7276. doi: 10.3748/wjg.v20.i23.7260.
  • Zhang CY, Yuan WG, He P, et al. Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol. 2016;22(48):10512–10522. doi: 10.3748/wjg.v22.i48.10512.
  • Shrestha N, Chand L, Han MK, et al. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol. 2016;93:129–137. doi: 10.1016/j.fct.2016.04.024.
  • Tanriverdi G, Kaya-Dagistanli F, Ayla S, et al. Resveratrol can prevent CCl4-induced liver injury by inhibiting notch signaling pathway. Histol Histopathol. 2016;31(7):769–784. doi: 10.14670/HH-11-720.
  • Sun H, Chen G, Wen B, et al. Oligo-peptide I-C-F-6 inhibits hepatic stellate cell activation and ameliorates CCl4-induced liver fibrosis by suppressing NF-κB signaling and wnt/β-catenin signaling. J Pharmacol Sci. 2018;136(3):133–141. doi: 10.1016/j.jphs.2018.01.003.
  • Yang JH, Kim SC, Kim KM, et al. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/smad signaling and relieving oxidative stress. Eur J Pharmacol. 2016;783:92–102. doi: 10.1016/j.ejphar.2016.04.042.
  • Zhang X, Kuang G, Wan J, et al. Salidroside protects mice against CCl4-induced acute liver injury via down-regulating CYP2E1 expression and inhibiting NLRP3 inflammasome activation. Int Immunopharmacol. 2020;85:106662. doi: 10.1016/j.intimp.2020.106662.
  • Liu W, Wang Z, Hou JG, et al. The liver protection effects of maltol, a flavoring agent, on carbon tetrachloride-Induced acute liver injury in mice via inhibiting apoptosis and inflammatory response. Molecules. 2018;23(9):2120. doi: 10.3390/molecules23092120.