1,028
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nitrogen-doped carbon quantum dots as a novel treatment for black fungal bone infections (Mucormycosis): in vitro and in vivo study

ORCID Icon, , , , , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 131-144 | Received 12 Jul 2023, Accepted 30 Jan 2024, Published online: 29 Feb 2024

References

  • Ezati P, Rhim JW, Molaei R, et al. Preparation and characterization of B, S, and N-doped glucose carbon dots: antibacterial, antifungal, and antioxidant activity. Sustain Mater Technol. 2022;32:e00397. doi: 10.1016/j.susmat.2022.e00397.
  • Rashdan HR, Abdelrahman M, Shehadi MT, et al. Novel thiadiazole-based molecules as promising inhibitors of black fungi and pathogenic bacteria: in vitro antimicrobial evaluation and molecular docking studies. Molecules. 2022;27(11):3613. doi: 10.3390/molecules27113613.
  • Gurunathan S, Lee AR, Kim JH. Antifungal effect of nanoparticles against COVID-19 linked black fungus: a perspective on biomedical applications. Int J Mol Sci. 2022;23(20):12526. doi: 10.3390/ijms232012526.
  • Narayanan S, Chua JV, Baddley JW. Coronavirus disease 2019-associated mucormycosis: risk factors and mechanisms of disease. Clin Infect Dis. 2022;74(7):1279–1283. doi: 10.1093/cid/ciab726.
  • Chouhan AS, Parihar B, Rathod B, et al. Overuse of steroid drugs methylprednisolone and dexamethasone (oral) causes a diabetic patient to become infected with the black fungus in the corona virus. Sys Rev Pharm. 2021;12(11):630–634.
  • Wu XX, Zhang Y, Hu T, et al. Long-term antibacterial composite via alginate aerogel sustained release of antibiotics and Cu used for bone tissue bacteria infection. Int J Biol Macromol. 2021;167:1211–1220. doi: 10.1016/j.ijbiomac.2020.11.075.
  • He Y, Jin Y, Ying X, et al. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater. 2020;7(5):515–525. doi: 10.1093/RB/RBAA015.
  • Gurunathan S, Han JW, Eppakayala V, et al. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796. doi: 10.1155/2013/535796.
  • Almalki AH, Hassan WH, Belal A, et al. Exploring the antimicrobial activity of sodium titanate nanotube biomaterials in combating bone infections: an in vitro and in vivo study. Antibiotics. 2023;12(5):799. doi: 10.3390/antibiotics12050799.
  • Yellatur CS, Padmasale R, Maiyalagan MT, et al. Facile electrooxidation of ethanol on reduced graphene oxide supported Pt–Pd bimetallic nanocomposite surfaces in acidic media. Nanotechnology. 2022;33(33):335401. doi: 10.1088/1361-6528/ac6df7.
  • Zhao X, Zhang Q, Huang X, et al. Polyoxometalate@ZIF-67 derived carbon-based catalyst for efficient electrochemical overall seawater splitting and oxygen reduction. Int J Hydrogen Energy. 2022;47(4):2178–2186. doi: 10.1016/j.ijhydene.2021.10.186.
  • Li Y, Lin W, Xue L, et al. Facile preparation of V2O3/black fungus-derived carbon composite with hierarchical porosity as a promising electrode for lithium/sodium ion batteries. J Alloys Compd. 2022;905:164258. doi: 10.1016/j.jallcom.2022.
  • Eivazzadeh-Keihan R, Maleki A, de la Guardia M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res. 2019;18:185–201. doi: 10.1016/j.jare.2019.03.011.
  • Geng B, Hu J, Li Y, et al. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy. Nat Commun. 2022;13(1):5735. doi: 10.1038/s41467-022-33474-8.
  • Bai S, Yang N, Wang X, et al. Ultrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapy. ACS Nano. 2020;14(11):15119–15130. doi: 10.1021/acsnano.0c05235.
  • Geng B, Xu S, Li P, et al. Platinum crosslinked carbon dot@TiO2−x p–n junctions for relapse-free sonodynamic tumor eradication via high-yield ROS and GSH depletion. Small. 2022;18(6):e2103528. doi: 10.1002/smll.202103528.
  • Ezati P, Rhim JW, Molaei R, et al. Carbon quantum dots-based antifungal coating film for active packaging application of avocado. Food Packag Shelf Life. 2022;33:100878. doi: 10.1016/j.fpsl.2022.
  • Enaiet Allah A, Tan H, Xu X, et al. Controlled synthesis of mesoporous nitrogen-doped carbons with highly ordered two-dimensional hexagonal mesostructures and their chemical activation. Nanoscale. 2018;10(26):12398–12406. doi: 10.1039/c8nr02647e.
  • Du B, Liu W, Deng Y, et al. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo. Int J Nanomedicine. 2015;10:2555–2565. doi: 10.2147/IJN.S78331.
  • Saeed E, Abdelwahab I, Abdelwahab A. Ni–Co–P functionalized nitrogen-doped-carbon quantum dots for efficient methanol electrooxidation and nanofluid applications. J Electroanal Chem. 2023;928:117083. doi: 10.1016/j.jelechem.2022.117083.
  • Hadacek F, Greger H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem Anal. 2000;11(3):137–147. doi: 10.1002/(SICI)1099-1565(200005/06)11:3<137::AID-PCA514>3.0.CO;2-I.
  • Morales G, Paredes A, Sierra P, et al. Antimicrobial activity of three Baccharis species used in the traditional medicine of Northern Chile. Molecules. 2008;13(4):790–794. doi: 10.3390/molecules13040790.
  • Leite MCA, De Brito Bezerra AP, De Sousa  , et al. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid Based Complement Alternat Med. 2014;2014:378280. doi: 10.1155/2014/378280.
  • Espinel-Ingroff A, Chaturvedi V, Fothergill A, et al. Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J Clin Microbiol. 2002;40(10):3776–3781. doi: 10.1128/JCM.402002.
  • Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; third informational supplement – M27-S3 Clinical and Laboratory Standards Institute – NCCLS; 2008.
  • Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2005;10(10):813–829. doi: 10.2174/0929867033457719.
  • Coelho De Souza G, Haas APS, Von Poser GL, et al. Ethnopharmacological studies of antimicrobial remedies in the South of Brazil. J Ethnopharmacol. 2004;90(1):135–143. doi: 10.1016/j.jep.2003.09.039.
  • Jeff-Agboola YA, Onifade AK, Akinyele BJ, et al. In vitro antifungal activities of essential oil from Nigerian medicinal plants against toxigenic Aspergillus flavus. J Med Plants Res. 2012;6(23):4048–4056. doi: 10.5897/JMPR12.525.
  • Walker HL, Mason AD. A standard animal burn. J Trauma. 1968;8(6):1049–1051. doi: 10.1097/00005373-196811000-00006.
  • Sasidharan S, Nilawatyi R, Xavier R, et al. Wound healing potential of Elaeis guineensis Jacq. leaves in an infected albino rat model. Molecules. 2010;15(5):3186–3199. doi: 10.3390/molecules15053186.
  • Merkelbach M, Kemp E, To R, et al. International committee of the red cross no 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析 title. VA J Int Law. 1979;15:1–50.
  • Sing KSW, Everett DH, Haul RAW, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):2201–2218. doi: 10.1351/pac198557040603.
  • Chai L, Wang P, Liu X, et al. Accurately control the micropore/mesopore ratio to construct a new hierarchical porous carbon with ultrahigh capacitance and rate performance. J. Power Sources. 2022;532:231324. doi: 10.1016/j.jpowsour.2022.
  • Marrakchi F, Hameed BH, Bouaziz M. Mesoporous and high-surface-area activated carbon from defatted olive cake by-products of olive mills for the adsorption kinetics and isotherm of methylene blue and acid blue 29. J Environ Chem Eng. 2020;8(5):104199. doi: 10.1016/j.jece.2020.
  • El Sharkawy HM, Dhmees AS, Tamman AR, et al. N-doped carbon quantum dots boost the electrochemical supercapacitive performance and cyclic stability of MoS2. J Energy Storage. 2020;27:101078. doi: 10.1016/j.est.2019.
  • Mansuriya BD, Altintas Z. Carbon dots: classification, properties, synthesis, characterization, and applications in health care-an updated review (2018–2021). Nanomaterials. 2021;11(10):2525. doi: 10.3390/nano11102525.
  • Limosani F, Bauer EM, Cecchetti D, et al. Top-down n-doped carbon quantum dots for multiple purposes: heavy metal detection and intracellular fluorescence. Nanomaterials. 2021;11(9):2249. doi: 10.3390/nano11092249.
  • Taj-Aldeen SJ, Gamaletsou MN, Rammaert B, et al. Bone and joint infections caused by mucormycetes: a challenging osteoarticular mycosis of the twenty-first century. Med Mycol. 2017;55(7):691–704. doi: 10.1093/mmy/myw136.
  • Ravn C, Neyt J, Benito N, et al. Guideline for management of septic arthritis in native joints (SANJO). J Bone Joint Infect. 2023;8(1):29–37. doi: 10.5194/jbji-8-2023.
  • Petrikkos G, Skiada A, Lortholary O, et al. Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis. 2012;54(Suppl. 1):S23–S34. doi: 10.1093/cid/cir866.
  • Binder U, Maurer E, Lass-Flörl C. Mucormycosis – from the pathogens to the disease. Clin Microbiol Infect. 2014. doi: 10.1111/1469-0691.12566.
  • Kronen R, Liang SY, Bochicchio G, et al. Invasive fungal infections secondary to traumatic injury. Int J Infect Dis. 2017;62:102–111. doi: 10.1016/j.ijid.2017.07.002.
  • Arnáiz-García ME, Alonso-Peña D, del Carmen González-Vela M, et al. Cutaneous mucormycosis: report of five cases and review of the literature. J Plast Reconstr Aesthet Surg. 2009;62(11):e434–e441. doi: 10.1016/j.bjps.2008.04.040.
  • Kaur H, Ghosh A, Rudramurthy SM, et al. Gastrointestinal mucormycosis in apparently immunocompetent hosts—a review. Mycoses. 2018;61(12):898–908. doi: 10.1111/myc.12798.
  • Kostov K, Andonova-Lilova B, Smagghe G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing. Biotechnol Biotechnol Equip. 2022;36(1):949–959. doi: 10.1080/13102818.2022.2146533.
  • Frost DJ, Brandt KD, Cugier D, et al. A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J Antibiot. 1995;48(4):306–310. doi: 10.7164/antibiotics.48.
  • Svetaz L, Agüero MB, Alvarez S, et al. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action. Planta Med. 2007;73(10):1074–1080. doi: 10.1055/s-2007-981561.
  • CLSI reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard—second edition serving the world’s medical science community through voluntary consensus; Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute, 2008.
  • Rex JH, Alexander BD, Andes D, et al. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard. 3rd ed. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute; 2008.
  • El-Ayaan U, Abdel-Aziz AAM. Synthesis, antimicrobial activity and molecular modeling of cobalt and nickel complexes containing the bulky ligand: bis[N-(2,6-diisopropylphenyl) imino] acenaphthene. Eur J Med Chem. 2005;40(12):1214–1221. doi: 10.1016/j.ejmech.2005.06.009.
  • Caneschi CA, Almeida AMd, Martins FJ, et al. In vitro antifungal activity of organic compounds derived from amino alcohols against onychomycosis. Braz J Microbiol. 2017;48(3):476–482. doi: 10.1016/j.bjm.2016.12.008.
  • Kim YH, Kim GH, Yoon KS, et al. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb Pathog. 2020;144:104178. doi: 10.1016/j.micpath.2020.104178.
  • Cortivo R, Vindigni V, Iacobellis L, et al. Nanoscale particle therapies for wounds and ulcers. Nanomedicine. 2010;5(4):641–656. doi: 10.2217/nnm.10.32.
  • Abbas M, Uçkay I, Lipsky BA. In diabetic foot infections antibiotics are to treat infection, not to heal wounds. Expert Opin Pharmacother. 2015;16(6):821–832. doi: 10.1517/14656566.2015.1021780.
  • Gottrup F, Apelqvist J, Bjarnsholt T, et al. EWMA document: antimicrobials and non-healing wounds evidence, controversies and suggestions. J Wound Care. 2013;22(5 Suppl.):S1–S89. doi: 10.12968/jowc.2013.22.
  • Robson MC. Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997;77(3):637–650. doi: 10.1016/S0039-6109(05)70572-7.
  • Singh A, Halder S, Menon GR, et al. Meta-analysis of randomized controlled trials on hydrocolloid occlusive dressing versus conventional gauze dressing in the healing of chronic wounds. Asian J Surg. 2004;27(4):326–332. doi: 10.1016/S1015-9584(09)60061-0.
  • Najjar MB, Kashtanov D, Chikindas ML. ε-Poly-l-lysine and nisin A act synergistically against Gram-positive food-borne pathogens Bacillus cereus and Listeria monocytogenes. Lett Appl Microbiol. 2007;45(1):13–18. doi: 10.1111/j.1472-765X.2007.02157.x.
  • Jian, H.J., Wu, R.S., Lin, T.Y., Li, Y.J., Lin, H.J., Harroun, S.G., Lai, J.Y., Huang, C.C. Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. ACS Nano 2017. doi: 10.1021/acsnano.7b01023.
  • Madeira MDP, Gusmão SB, De Lima S, et al. Depositation of sodium titanate nanotubes: superhydrophilic surface and antibacterial approach. J Mater Res Technol. 2022;19:2104–2114. doi: 10.1016/j.jmrt.2022.05.175.
  • Mohamed H, Zaki AH, Abo El-Ela FI, et al. Effect of hydrothermal time and acid-washing on the antibacterial activity of sodium titanate nanotubes. IOP Conf Ser Mater Sci Eng. 2021;1046(1):012025. doi: 10.1088/1757-899X/1046/1/012025.
  • Maikranz E, Spengler C, Thewes N, et al. Different binding mechanisms of: Staphylococcus aureus to hydrophobic and hydrophilic surfaces. Nanoscale. 2020;12(37):19267–19275. doi: 10.1039/d0nr03134h.
  • Hwangbo S, Jeong H, Heo J, et al. Antibacterial nanofilm coatings based on organosilicate and nanoparticles. React Funct Polym. 2016;102:27–32. doi: 10.1016/j.reactfunctpolym.2016.03.004.
  • Ji XW, Liu PT, Tang JC, et al. Different antibacterial mechanisms of titania nanotube arrays at various growth phases of E. coli. Trans Nonferrous Met Soc China (Engl Ed). 2021;31(12):3821–3830. doi: 10.1016/S1003-6326(21)65767-9.