1,036
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mikania micrantha silver nanoparticles exhibit anticancer activities against human lung adenocarcinoma via caspase-mediated apoptotic cell death

, ORCID Icon, , , , , & ORCID Icon show all
Pages 186-200 | Received 04 Jan 2024, Accepted 27 Feb 2024, Published online: 11 Mar 2024

References

  • Al-Sheddi ES, Farshori NN, Al-Oqail MM, et al. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl. 2018;2018:9390784–9390712. doi:10.1155/2018/9390784.
  • Fageria L, Pareek V, Dilip RV, et al. Biosynthesized protein-capped silver nanoparticles induce ROS-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega. 2017;2(4):1489–1504. doi:10.1021/acsomega.7b00045.
  • Pallavi SS, Rudayni HA, Bepari A, et al. Green synthesis of silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J Biol Sci. 2021;29(1):228–238. doi:10.1016/j.sjbs.2021.08.084.
  • Gurunathan S, Han JW, Eppakayala V, et al. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796. doi:10.1155/2013/535796.
  • Xu L, Wang YY, Huang J, et al. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. doi:10.7150/thno.45413.
  • Acharya D, Satapathy S, Somu P, et al. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res. 2021;199(5):1812–1822. doi:10.1007/s12011-020-02304-7.
  • Wypij M, Jędrzejewski T, Trzcińska-Wencel J, et al. Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol. 2021;12:632505. doi:10.3389/fmicb.2021.632505.
  • Lalsangpuii F, Rokhum SL, Nghakliana F, et al. Green synthesis of silver nanoparticles using Spilanthes acmella leaf extract and its antioxidant-mediated ameliorative activity against doxorubicin-induced toxicity in Dalton’s lymphoma ascites (DLA)-bearing mice. ACS Omega. 2022;7(48):44346–44359. doi:10.1021/acsomega.2c05970.
  • Devanesan S, AlSalhi MS. Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. Int J Nanomedicine. 2021;16:3343–3356. doi:10.2147/IJN.S307676.
  • Ríos E, León A, Chávez MI, et al. Sesquiterpene lactones from Mikania micrantha and Mikania cordifolia and their cytotoxic and anti-inflammatory evaluation. Fitoterapia. 2014;94:155–163. doi:10.1016/j.fitote.2014.02.006.
  • Saikia S, Tamuli KJ, Narzary B, et al. Chemical characterization, antimicrobial activity, and cytotoxic activity of Mikania micrantha Kunth flower essential oil from North East India. Chem Pap. 2020;74(8):2515–2528. doi:10.1007/s11696-020-01077-6.
  • Li Y, Li J, Wang XX, et al. Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PLoS One. 2013;8(10):e76725. doi:10.1371/journal.pone.0076725.
  • Sheam M, Haque Z, Nain Z. Towards the antimicrobial, therapeutic and invasive properties of Mikania micrantha Knuth: a brief overview. J Adv Biotechnol Exp Ther. 2020;3(2):92–101. doi:10.5455/jabet.2020.d112.
  • Ishak AH, Shafie NH, Esa NM, et al. From weed to medicinal plant: antioxidant capacities and phytochemicals of various extracts of Mikania micrantha. IJAB. 2018;20(03):561–568. doi:10.17957/IJAB/15.0522.
  • Nayak SK, Maharana M, Jagat S, et al. Anti-bacterial potential and qualitative phytochemical analysis of an invasive alien plant Mikania micrantha Kunth found in Dhenkanal district of Odisha, India. Int J Pharm Sci Rev Res. 2017;4:53–58.
  • Dou X, Zhang Y, Sun N, et al. The anti-tumor activity of Mikania micrantha aqueous extract in vitro and in vivo. Cytotechnology. 2014;66(1):107–117. doi:10.1007/s10616-013-9543-9.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63. doi:10.1016/0022-1759(83)90303-4.
  • Khan MS, Alomari A, Tabrez S, et al. Anticancer potential of biogenic silver nanoparticles: a mechanistic study. Pharmaceutics. 2021;13(5):707. doi:10.3390/pharmaceutics13050707.
  • Chang X, Wang X, Li J, et al. Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway. Ecotoxicol Environ Saf. 2021;208:111696. doi:10.1016/j.ecoenv.2020.111696.
  • Franken NA, Rodermond HM, Stap J, et al. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–2319. doi:10.1038/nprot.2006.339.
  • Kasibhatla S, Amarante-Mendes GP, Finucane D, et al. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harb Protoc. 2006;3:4493.
  • Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–191. doi:10.1016/0014-4827(88)90265-0.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275. doi:10.1016/S0021-9258(19)52451-6.
  • Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67–78. doi:10.1016/0304-4165(79)90289-7.
  • Beutler E. Red cell metabolism, a manual of biochemical methods. 3rd ed. New York: Grune Startton; 1984. p. 133.
  • Fried R. Enzymatic and non-enzymatic assay of superoxide dismutase. Biochimie. 1975;57(5):657–660. doi:10.1016/S0300-9084(75)80147-7.
  • Buege JA, Aust SD. Biomembranes - part C: biological oxidations. Methods Enzymol. 1978;52:302–310.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–ddC(T)) method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. J Anal Chem. 1976;72:248–254.
  • Widatalla HA, Yassin LF, Alrasheid AA, et al. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 2022;4(3):911–915. doi:10.1039/d1na00509j.
  • Shahzadi I, Aziz Shah SM, Shah MM, et al. Antioxidant, cytotoxic, and antimicrobial potential of silver nanoparticles synthesized using Tradescantia pallida extract. Front Bioeng Biotechnol. 2022;10:907551. doi:10.3389/fbioe.2022.907551.
  • Biswas A, Vanlalveni C, Adhikari PP, et al. Green biosynthesis, characterisation and antimicrobial activities of silver nanoparticles using fruit extract of Solanum viarum. IET Nanobiotechnol. 2018;12(7):933–938. doi:10.1049/iet-nbt.2018.0050.
  • Bhakya S, Muthukrishnan S, Sukumaran M, et al. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci. 2016;6(5):755–766. doi:10.1007/s13204-015-0473-z.
  • Ahmed S, Ikram S. Silver nanoparticles: one pot green synthesis using terminalia arjuna extract for biological application. J. Nanomed. Nanotechnol. 2015;6(4):309. doi:10.4172/2157-7439.1000309.
  • Parveen M, Ahmad F, Malla AM, et al. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay. Appl Nanosci. 2016;6(2):267–276. doi:10.1007/s13204-015-0433-7.
  • Bidian C, Filip GA, David L, et al. Green synthesized gold and silver nanoparticles increased oxidative stress and induced cell death in colorectal adenocarcinoma cells. Nanomaterials. 2023;13(7):1251. doi:10.3390/nano13071251.
  • Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167–197. doi:10.1016/j.ccell.2020.06.001.
  • Kennedy L, Sandhu JK, Harper M-E, et al. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules. 2020;10(10):1429. doi:10.3390/biom10101429.
  • Gupta N, Verma K, Nalla S, et al. Free radicals as a double-edged sword: the cancer preventive and therapeutic roles of curcumin. Molecules. 2020;25(22):5390. doi:10.3390/molecules25225390.
  • Yui K, Imataka G, Shiohama T. Lipid peroxidation via regulating the metabolism of docosahexaenoic acid and arachidonic acid in autistic behavioral symptoms. Curr Issues Mol Biol. 2023;45(11):9149–9164. doi:10.3390/cimb45110574.