514
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green synthesized silver nanoparticles of Terminalia bellirica leaves extract: synthesis, characterization, in-silico studies, and antimalarial activity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 238-249 | Received 13 Sep 2023, Accepted 27 Feb 2024, Published online: 02 May 2024

References

  • Rajakumar G, Rahuman AA, Chung IM, et al. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss Albino mice. Parasitol Res. 2015;114(4):1397–1406. doi: 10.1007/s00436-015-4318-1.
  • Soni R, Sharma D, Rai P, et al. Signaling strategies of malaria parasite for its survival, proliferation, and infection during erythrocytic stage. Front Immunol. 2017;8:349. doi: 10.3389/fimmu.2017.00349.
  • Soni R, Sharma D, Bhatt TK. Plasmodium falciparum secretome in erythrocyte and beyond. Front Microbiol. 2016;7:194. doi: 10.3389/fmicb.2016.00194.
  • Tripathi H, Bhalerao P, Singh S, et al. Malaria therapeutics: are we close enough? Parasit Vectors. 2023;16(1):130. doi: 10.1186/s13071-023-05755-8.
  • Sharma D, Soni R, Patel S, et al. In-silico studies on DegP protein of Plasmodium falciparum in search of anti-malarials. J Mol Model. 2016;22(9):201. doi: 10.1007/s00894-016-3064-3.
  • Abuaku B, Duah-Quashie NO, Quashie N, et al. Trends and predictive factors for treatment failure following artemisinin-based combination therapy among children with uncomplicated malaria in Ghana: 2005–2018. BMC Infect Dis. 2021;21(1):1255. doi: 10.1186/s12879-021-06961-4.
  • Hawadak J, Kojom Foko LP, Pande V, et al. In vitro antiplasmodial activity, hemocompatibility and temporal stability of Azadirachta indica silver nanoparticles. Artif Cells Nanomed Biotechnol. 2022;50(1):286–300. doi: 10.1080/21691401.2022.2126979.
  • Takashima E, Tachibana M, Morita M, et al. Identification of novel malaria transmission-blocking vaccine candidates. Front Cell Infect Microbiol. 2021;11:805482. doi: 10.3389/fcimb.2021.805482.
  • Okaiyeto K, Hoppe H, Okoh AI. Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: characterization and its antiplasmodial activity. J Clust Sci. 2021;32(1):101–109. doi: 10.1007/s10876-020-01766-y.
  • Arya G, Kumari RM, Gupta N, et al. Green synthesis of silver nanoparticles using prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities," (in eng). Artif Cells Nanomed Biotechnol. 2018;46(5):985–993. doi: 10.1080/21691401.2017.1354302.
  • Bhatnagar S, Kobori T, Ganesh D, et al. Biosynthesis of silver nanoparticles mediated by extracellular pigment from talaromyces purpurogenus and their biomedical applications. Nanomaterials. 2019;9(7):1042. doi: 10.3390/nano9071042.
  • Balachandar R, Gurumoorthy P, Karmegam N, et al. Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: a recent advance in phytonanotechnology. J Clust Sci. 2019;30(6):1481–1488. doi: 10.1007/s10876-019-01591-y.
  • Jamdagni P, Khatri P, Rana J-SJ. Green synthesis of zinc oxide nanoparticles using flower extract of nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci. 2018;30(2):168–175. doi: 10.1016/j.jksus.2016.10.002.
  • Singh P, Ahn S, Kang J-P, et al. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif Cells Nanomed Biotechnol. 2018;46(8):2022–2032. doi: 10.1080/21691401.2017.1408117.
  • Haggag EG, Elshamy AM, Rabeh MA, et al. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomedicine. 2019;14:6217–6229. doi: 10.2147/ijn.S214171.
  • Arya G, Kumari RM, Sharma N, et al. Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential. J Photochem Photobiol B. 2019;190:50–58. doi: 10.1016/j.jphotobiol.2018.11.005.
  • Galatage ST, Hebalkar AS, Dhobale SV, et al. Silver nanoparticles: properties, synthesis, characterization, applications and future trends In Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications, Edited by Kumar S, Kumar P, Pathak CS 2021;266. DOI: 10.5772/intechopen.99173.
  • Sharma N, Singhal M, Kumari RM, et al. Diosgenin loaded polymeric nanoparticles with potential anticancer efficacy. Biomolecules. 2020;10(12):1679.) doi: 10.3390/biom10121679.
  • Vijayaram S, Razafindralambo H, Sun YZ, et al. Applications of green synthesized metal nanoparticles—a review. Biologic. Trace Element Res. 2023;202:1–27. https://doi.org/10.1007/s12011-023-03645-9.
  • Druzian DM, Machado AK, Pappis L, et al. Synthesis, characterization, cytotoxicity and antimicrobial activity of a nanostructured mineral clay. Ceram Int. 2023;49(19):31066–31076. doi: 10.1016/j.ceramint.2023.07.051.
  • Pinheiro LDSM, Sentena NZ, Sangoi GG, et al. Copper nanoparticles from acid ascorbic: biosynthesis, characterization, in vitro safety profile and antimicrobial activity. 2023; 307:128110. https://doi.org/10.1016/j.matchemphys.2023.128110.
  • Avitabile E, Senes N, D’Avino C, et al. The potential antimalarial efficacy of hemocompatible silver nanoparticles from Artemisia species against P. falciparum parasite (in eng). PLOS One. 2020;15(9):e0238532. doi: 10.1371/journal.pone.0238532.
  • Behravan M, Hossein Panahi A, Naghizadeh A, et al. Facile green synthesis of silver nanoparticles using berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol. 2019;124:148–154. doi: 10.1016/j.ijbiomac.2018.11.101.
  • Gahatraj S, Bhusal B, Sapkota K, et al. Common medicinal plants of Nepal: a review of Triphala: Harro (Terminalia chebula), Barro (Terminalia Bellirica), and Amala (Emblica Officinalis). Asian J.Pharmacogn. 2020;4(3):5–13.
  • Mnkandhla D, Marwijk JV, Hoppe H, et al. In vivo; in vitro interaction of silver nanoparticles with leucine aminopeptidase from human and Plasmodium falciparum. J Nanosci Nanotechnol. 2018;18(2):865–871. doi: 10.1166/jnn.2018.13966.
  • Klein MM, Gittis AG, Su H-P, et al. The cysteine-rich interdomain region from the highly variable plasmodium falciparum erythrocyte membrane protein-1 exhibits a conserved structure. PLOS Pathog. 2008;4(9):e1000147. doi: 10.1371/journal.ppat.1000147.
  • De Moor W, van Marwijk J, Wilhelmi BS, et al. Interaction of silver nanoparticles with triosephosphate isomerase from human and malarial parasite (Plasmodium falciparum): a comparative study. J Biomed Nanotechnol. 2015;11(6):1071–1079. doi: 10.1166/jbn.2015.2003.
  • Kumar N, Khurana SMP. Phytochemistry and medicinal potential of the Terminalia bellirica roxb.(bahera). Indian J Nat Prod Resour. 2018;9(2):97–107.
  • Arya H, Syed SB, Singh SS, et al. In silico investigations of chemical constituents of Clerodendrum colebrookianum in the anti-hypertensive drug targets: ROCK, ACE, and PDE5. Interdiscip Sci. 2018;10(4):792–804. doi: 10.1007/s12539-017-0243-6.
  • Forli S, Huey R, Pique ME, et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905–919. doi: 10.1038/nprot.2016.051.
  • Karthik CS, Chethana MH, Manukumar HM, et al. Synthesis and characterization of chitosan silver nanoparticle decorated with benzodioxane coupled piperazine as an effective anti-biofilm agent against MRSA: a validation of molecular docking and dynamics. Int J Biol Macromol. 2021;181:540–551. doi: 10.1016/j.ijbiomac.2021.03.119.
  • Indari O, Kumar Singh A, Tiwari D, et al. Deciphering antiviral efficacy of malaria box compounds against malaria exacerbating viral pathogens-Epstein Barr virus and SARS-CoV-2, an in silico study. Med Drug Discov. 2022;16:100146. doi: 10.1016/j.medidd.2022.100146.
  • Arya H, Yadav CS, Lin S-Y, et al. Design of a potent anticancer lead inspired by natural products from traditional indian medicine. J Biomol Struct Dyn. 2020;38(12):3563–3577. doi: 10.1080/07391102.2019.1664326.
  • Ahmed Q, Gupta N, Kumar A, et al. Antibacterial efficacy of silver nanoparticles synthesized employing terminalia arjuna bark extract. Artif Cells Nanomed Biotechnol. 2017;45(6):1–9. doi: 10.1080/21691401.2016.1215328.
  • Radfar A, Méndez D, Moneriz C, et al. Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc. 2009;4(12):1899–1915. doi: 10.1038/nprot.2009.198.
  • Sahu W, Bai T, Panda PK, et al. Plasmodium falciparum HSP40 protein eCiJp traffics to the erythrocyte cytoskeleton and interacts with the human HSP70 chaperone HSPA1. FEBS Lett. 2022;596(1):95–111. doi: 10.1002/1873-3468.14255.
  • Reddy KS, Amlabu E, Pandey AK, et al. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for ierythrocyte invasion," (in eng). Proc Natl Acad Sci USA. 2015;112(4):1179–1184. doi: 10.1073/pnas.1415466112.
  • De Lucia S, Tsamesidis I, Pau MC, et al. Induction of high tolerance to artemisinin by sub-lethal administration: a new in vitro model of P. falciparum. PLOS One. 2018;13(1):e0191084. doi: 10.1371/journal.pone.0191084.
  • Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65(3):418–420. doi: 10.2307/3280287.
  • Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–675. doi: 10.1126/science.781840.
  • Ahmed T, Shahid M, Noman M, et al. Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticles. J Adv Res. 2020;24:475–483. doi: 10.1016/j.jare.2020.05.011.
  • Trung TT, Van Cuong N, Hong LTT, et al. Study on synthesizing silver nanoparticles by using Muntingia calabura leaf extract: insights from experimental and theoretical studies. Vietnam J Chem. 2021;59(5):606–611. doi: 10.1002/vjch.202100012.
  • Singh S, Bharti A, Meena VKJ. Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties. J Mater Sci Mater Electron. 2015;26(6):3638–3648. doi: 10.1007/s10854-015-2881-y.
  • Pradeepa M, Harini K, Ruckmani K, et al. Extracellular bio-inspired synthesis of silver nanoparticles using raspberry leaf extract against human pathogens. Int. J. Pharm. Sci. Rev. Res. 2014;25(2):160–165.
  • Ajitha B, Reddy YAK, Reddy PS, et al. Instant biosynthesis of silver nanoparticles using Lawsonia inermis leaf extract: innate catalytic, antimicrobial and antioxidant activities. J Mol Liq. 2016;219:474–481. doi: 10.1016/j.molliq.2016.03.041.
  • Pabisch S, Feichtenschlager B, Kickelbick G, et al. Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM. Chem Phys Lett. 2012;521(C):91–97. doi: 10.1016/j.cplett.2011.11.049.
  • Serrano-Díaz P, Williams DW, Vega-Arreguin J, et al. Geranium leaf-mediated synthesis of silver nanoparticles and their transcriptomic effects on Candida albicans. Green Process. Syn. 2023;12(1):20228105.
  • Sizochenko N, Mikolajczyk A, Syzochenko M, et al. Zeta potentials (ζ) of metal oxide nanoparticles: a meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact. 2021;22:100317. doi: 10.1016/j.impact.2021.100317.
  • El Badawy AM, Silva RG, Morris B, et al. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283–287. doi: 10.1021/es1034188.
  • Kojom Foko LP, et al. A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synthesis mediated metal nanoparticles: overview. Challen Fut Perspect. 2019;18:1–14.
  • Saini P, Saha SK, Roy P, et al. Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp Parasitol. 2016;160:39–48. doi: 10.1016/j.exppara.2015.11.004.
  • Alkholief M, Kalam MA, Alshememry AK, et al. Topical application of linezolid-loaded chitosan nanoparticles for the treatment of eye infections. Nanomaterials. 2023;13(4); 681. doi: 10.3390/nano13040681.
  • Arya G, Kumari R, Pundir R, et al. Versatile biomedical potential of biosynthesized silver nanoparticles from Acacia nilotica bark. J Appl Biomed. 2019;17(2):115–124. doi: 10.32725/jab.2019.010.
  • Macovei I, Luca SV, Skalicka-Woźniak K, et al. Phyto-functionalized silver nanoparticles derived from conifer bark extracts and evaluation of their antimicrobial and cytogenotoxic effects. Molecules. 2021;27(1):217. doi: 10.3390/molecules27010217.
  • Benedec D, Oniga I, Cuibus F, et al. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. Int J Nanomedicine. 2018;13:1041–1058. doi: 10.2147/ijn.S149819.
  • Rahman H, Rauf A, Khan SA, et al. Green synthesis of silver nanoparticles using Rhazya stricta Decne extracts and their anti-microbial and anti-oxidant activities. Crystals. 2023;13(3):398. doi: 10.3390/cryst13030398.
  • Jeeva K, Thiyagarajan M, Elangovan V, and Products, et al. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crops Prod. 2014;52:714–720. doi: 10.1016/j.indcrop.2013.11.037.
  • Gupta SC, Prasad S, Tyagi AK, et al. Neem (Azadirachta indica): an Indian traditional panacea with modern molecular basis. Phytomedicine. 2017;34:14–20. doi: 10.1016/j.phymed.2017.07.001.
  • Bekono BD, Ntie-Kang F, Onguéné PA, et al. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J. 2020;19(1):183. doi: 10.1186/s12936-020-03231-7.
  • Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in Middle Eastern plants. Front Microbiol. 2019;10:911. doi: 10.3389/fmicb.2019.00911.
  • Phillipson JD, Wright CW. Antiprotozoal agents from plant sources. Planta Med. 1991;57(7 Suppl):S53–S59. doi: 10.1055/s-2006-960230.
  • Meena PR, Singh AP, Tejavath KK, et al. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega. 2020;5(10):5520–5528, doi: 10.1021/acsomega.0c00155.
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502. doi: 10.1016/j.jcis.2004.03.003.
  • Gomathi M, Rajkumar P, Prakasam A, et al. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resour-Effic Technol. 2017;3(3):280–284. doi: 10.1016/j.reffit.2016.12.005.
  • Alyousef AA, Arshad M, AlAkeel R, et al. Biogenic silver nanoparticles by Myrtus communis plant extract: biosynthesis, characterization and antibacterial activity. Biotechnol Biotechnol Equip. 2019;33(1):931–936. doi: 10.1080/13102818.2019.1629840.
  • Muthukumaran U, Govindarajan M, Rajeswary M, et al. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res. 2015;114(5):1817–1827. doi: 10.1007/s00436-015-4368-4.
  • Zhao Y, Wang Y, Ran F, et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep. 2017;7(1):4131. doi: 10.1038/s41598-017-03834-2.