50
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Diagnostic performance of a modified visual perception test

ORCID Icon, , , &

References

  • Threlkeld SW, McClure MM, Bai J, et al. Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1. Brain Res Bull. 2007;71(5):508–514.
  • Wang Y, Paramasivam M, Thomas A, et al. DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience. 2006;143(2):515–522.
  • Velayos-Baeza A, Levecque C, Kobayashi K, et al. The dyslexia-associated KIAA0319 protein undergoes proteolytic processing with {gamma}-secretase-independent intramembrane cleavage. J Biol Chem. 2010;285(51):40148–40162.
  • Kato M, Okanoya K, Koike T, et al. Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain. Brain Lang. 2014;133:26–38.
  • Martinez-Garay I, Guidi LG, Holloway ZG, et al. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice. Brain Struct Funct. 2017;222(3):1367–1384.
  • Peschansky VJ, Burbridge TJ, Volz AJ, et al. The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cereb Cortex. 2010;20(4):884–897.
  • Gabel LA, Marin I, LoTurco JJ, et al. Mutation of the dyslexia-associated gene Dcdc2 impairs LTM and visuo-spatial performance in mice. Genes Brain Behav. 2011;10(8):868–875.
  • Wang Y, Yin X, Rosen G, et al. Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of doublecortin. Neuroscience. 2011;190:398–408.
  • Fischer B, Hartnegg K, Mokler A. Dynamic visual perception of dyslexic children. Perception. 2000;29(5):523–530.
  • Lambek R, Trillingsgaard A. Elaboration, validation and standardization of the five to fifteen (FTF) questionnaire in a Danish population sample. Res Dev Disabil. 2015;38:161–170.
  • Maleka L, Kiorlos V. Stanford Binet intelligence scale. 7th ed. Cairo (Egypt): El-Nahda Publishing; 1999.
  • Albehairy AR, Aglan A. Children’s attention and adjustment survey (CAAS). Cairo (Egypt): EL-Nahda Publishing; 1997.
  • Aboras Y, Abdou R, Kozou H. Development of an Arabic test for assessment of dyslexia in egyptian children. Bull Alex Fac Med. 2008;44(3):653–662.
  • Ng CF, Ng, PK. Phonological awareness and its assessments: a brief literature review. Frontiers of Language and Teaching. 2014;5(1):81–85.
  • Eden GF, Stein JF, Wood HM, et al. Differences in eye movements and reading problems in dyslexic and normal children. Vision Res. 1994;34(10):1345–1358.
  • MedCalc. Statistical software version 19.2.6. 2020 [cited Jun 2022]. Available from: https://www.medcalc.org/
  • Hajian-Tilaki K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4(2):627–635.
  • Blau V, van Atteveldt N, Ekkebus M, et al. Reduced neural integration of letters and speech sounds links phonological and reading deficits in adult dyslexia. Curr Biol. 2009;19(6):503–508.
  • Olulade OA, Napoliello EM, Eden GF. Abnormal visual motion processing is not a cause of dyslexia. Neuron. 2013;79(1):180–190.
  • Wuang YP, Su CY. Rasch analysis of the developmental test of visual-motor integration in children with intellectual disabilities. Res Dev Disabil. 2009;30(5):1044–1053.
  • Hari R, Renvall H. Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn Sci. 2001;5(12):525–532.
  • Wilcockson TDW, Mardanbegi D, Sawyer P, et al. Oculomotor and inhibitory control in dyslexia. Front Syst Neurosci. 2018;12:66.
  • Geiger G, Lettvin JY, Fahle M. Dyslexic children learn a new visual strategy for reading: a controlled experiment. Vision Res. 1994;34(9):1223–1233.
  • Livingstone MS, Rosen GD, Drislane FW, et al. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci USA. 1991;88(18):7943–7947.
  • Stein J, Talcott J. Impaired neuronal timing in developmental dyslexia—the magnocellular hypothesis. Dyslexia. 1999;5(2):59–77.
  • Ahmadi K, Pouretemad HR, Esfandiari J, et al. Psychophysical evidence for impaired Magno, Parvo, and Konio-cellular pathways in dyslexic children. J Ophthalmic Vis Res. 2015;10(4):433–440.
  • Bonfiglio L, Bocci T, Minichilli F, et al. Defective chromatic and achromatic visual pathways in developmental dyslexia: cues for an integrated intervention programme. Restor Neurol Neurosci. 2017;35(1):11–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.