2,673
Views
0
CrossRef citations to date
0
Altmetric
Emerging seasonal and pandemic influenza infections

HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2302854 | Received 23 Jul 2023, Accepted 03 Jan 2024, Published online: 03 Feb 2024

References

  • Claas EC, Osterhaus AD, van Beek R, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998 Feb 14;351(9101):472–477.
  • Capua I, Alexander DJ. Avian influenza and human health. Acta Trop. 2002 Jul;83(1):1–6.
  • Capua I, Alexander DJ. Avian influenza infections in birds - a moving target. Influenza Other Resp. 2007 Jan;1(1):11–18.
  • Shortridge KF. Poultry and the influenza H5N1 outbreak in Hong Kong, 1997. Abridged chronology and virus isolation. Vaccine. 1999 Jul 30;17:S26–S29.
  • Sabirovic MH, Wilesmith J, Coulson N, et al. HPAI H5N1 situation in Europe and potential risk factors for the introduction of the virus to the United Kingdom. Defra. 2006:26.
  • Salzberg SL, Kingsford C, Cattoli G, et al. Genome analysis linking recent European and African influenza (H5N1) viruses. Emerg Infect Dis. 2007 May;13(5):713–718.
  • Wang GH, Zhan DW, Li LX, et al. H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation. J Gen Virol. 2008 Mar;89:697–702.
  • WHO. Avian Influenza Weekly Update. 2021. Available from: https://www.who.int/docs/default-source/wpro—documents/emergency/surveillance/avian-influenza/ai-20211231.pdf?sfvrsn=30d65594_193.
  • Jhung MA, Nelson DI, Centers for Disease C, et al. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds–United States, December 2014-January 2015. MMWR Morb Mortal Wkly Rep. 2015 Feb 6;64(4):111.
  • Lee YJ, Choi YK, Kim YJ, et al. Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds, South Korea. Emerg Infect Dis. 2008 Mar;14(3):487–490.
  • Yang H, Carney PJ, Mishin VP, et al. Molecular characterizations of surface proteins hemagglutinin and neuraminidase from recent H5Nx avian influenza viruses. J Virol. 2016 Jun 15;90(12):5770–5784.
  • Kim YI, Park SJ, Kwon HI, et al. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea. Infect Genet Evol. 2017 Sep;53:56–67.
  • Adlhoch C, Gossner C, Koch G, et al. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005. Euro Surveill. 2014 Dec 18;19(50):20996.
  • Bouwstra R, Heutink R, Bossers A, et al. Full-Genome sequence of influenza A(H5N8) virus in poultry linked to sequences of strains from Asia, The Netherlands, 2014. Emerg Infect Dis. 2015 May;21(5):872–874.
  • Harder T, Maurer-Stroh S, Pohlmann A, et al. Influenza A(H5N8) virus similar to strain in Korea causing highly pathogenic avian influenza in Germany. Emerg Infect Dis. 2015 May;21(5):860–863.
  • Lee DH, Torchetti MK, Winker K, et al. Intercontinental spread of Asian-origin H5N8 to North America through beringia by migratory birds. J Virol. 2015 Jun;89(12):6521–6524.
  • Beerens N, Heutink R, Bergervoet SA, et al. Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, The Netherlands, 2016. Emerg Infect Dis. 2017 Dec;23(12):1974–1981.
  • Lee YN, Cheon SH, Kye SJ, et al. Novel reassortants of clade 2.3.4.4 H5N6 highly pathogenic avian influenza viruses possessing genetic heterogeneity in South Korea in late 2017. J Vet Sci. 2018 Nov 30;19(6):850–854.
  • Jeong S, Lee DH, Kwon JH, et al. Highly pathogenic avian influenza clade 2.3.4.4b subtype H5N8 virus isolated from mandarin duck in South Korea, 2020. Viruses. 2020 Dec 4;12(12.
  • Lewis NS, Banyard AC, Whittard E, et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg Microbes Infect. 2021 Dec;10(1):148–151.
  • Poen MJ, Venkatesh D, Bestebroer TM, et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017-18. Virus Evol. 2019 Jan;5(1):vez004.
  • Gambaryan AS, Matrosovich TY, Philipp J, et al. Receptor-binding profiles of H7 subtype influenza viruses in different host species. J Virol. 2012 Apr;86(8):4370–4379.
  • de Vries RP, Peng W, Grant OC, et al. Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathog. 2017 Jun;13(6):e1006390.
  • Peng W, Bouwman KM, McBride R, et al. Enhanced human-type receptor binding by ferret-transmissible H5N1 with a K193T mutation. J Virol. 2018 May 15;92(10.
  • Li J, Deng G, Shi J, et al. Genetic and biological characterization of H3N2 avian influenza viruses isolated from poultry farms in China between 2019 and 2021. Transbound Emerg Dis. 2023;2023:8834913.
  • Medeiros R, Naffakh N, Manuguerra JC, et al. Binding of the hemagglutinin from human or equine influenza H3 viruses to the receptor is altered by substitutions at residue 193. Arch Virol. 2004 Aug;149(8):1663–1671.
  • Wan Z, Zhao Z, Sang J, et al. Amino acid variation at hemagglutinin position 193 impacts the properties of H9N2 avian influenza virus. J Virol. 2023 Feb 28;97(2):e0137922.
  • Chang HK, Park JH, Song MS, et al. Development of multiplex rt-PCR assays for rapid detection and subtyping of influenza type A viruses from clinical specimens. J Microbiol Biotechnol. 2008 Jun;18(6):1164–1169.
  • Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002 Aug;2(3):1–22.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455–461.
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785–2791.
  • Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108–6113.
  • Matrosovich MN, Gambaryan AS. Solid-phase assays of receptor-binding specificity. Methods Mol Biol. 2012;865:71–94.
  • Paulson JC, Rogers GN. Resialylated erythrocytes for assessment of the specificity of sialyloligosaccharide binding proteins. Methods Enzymol. 1987;138:162–168.
  • PromoCell. Air-Liquid Interface Culture System for Standardized Respiratory Research 2021. Available from: https://promocell.com/wp-content/uploads/2021/06/App-note-ALI-System-web.pdf.
  • Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–497.
  • WOAH(OIE). OIE Terrestrial Manual 2021 Paris 2021. Available from: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf.
  • Sagong M, Lee YN, Song S, et al. Emergence of clade 2.3.4.4b novel reassortant H5N1 high pathogenicity avian influenza virus in South Korea during late 2021. Transbound Emerg Dis. 2022 Sep;69(5):e3255–e3260.
  • Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature. 2006 Nov 16;444(7117):378–382.
  • Zamarin D, Ortigoza MB, Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol. 2006 Aug;80(16):7976–7983.
  • Fan S, Macken CA, Li C, et al. Synergistic effect of the PDZ and p85β-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus. J Virol. 2013 May;87(9):4861–4871.
  • Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008 Feb;82(3):1146–1154.
  • Korteweg C, Gu J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol. 2008 May;172(5):1155–1170.
  • Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012 May 2;486(7403):420–428.
  • Belser JA, Katz JM, Tumpey TM. The ferret as a model organism to study influenza A virus infection. Dis Model Mech. 2011 Sep;4(5):575–579.
  • Kwon HI, Kim EH, Kim YI, et al. Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016-2017 winter season. Emerg Microbes Infect. 2018 Mar 14;7(1):29.
  • Liu WJ, Li J, Zou R, et al. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23807–23814.
  • European Food Safety Authority ECDP, Control, European Union Reference Laboratory for Avian I. Avian Influenza Overview August - December 2020. EFSA J. 2020 Dec;18(12):e06379.
  • Cui P, Shi J, Wang C, et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect. 2022 Dec;11(1):1693–1704.
  • CDC. Reported Human Infections with Avian Influenza A Viruses 2023. Available from: https://www.cdc.gov/flu/avianflu/reported-human-infections.htm.
  • Ning ZY, Luo MY, Qi WB, et al. Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry. Vet Res Commun. 2009 Dec;33(8):895–903.
  • Li X, Shi J, Guo J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathog. 2014 Nov;10(11):e1004508.
  • WHO. Influenza at the human-animal interface summary and assessment, 11 November 2022 2022. Available from: https://www.who.int/publications/m/item/influenza-at-the-human-animal-interface-summary-and-assessment-11-nov-2022.
  • Pyankova OG, Susloparov IM, Moiseeva AA, et al. Isolation of clade 2.3.4.4b A(H5N8), a highly pathogenic avian influenza virus, from a worker during an outbreak on a poultry farm, Russia, December 2020. Euro Surveill. 2021 Jun;26(24).