736
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of highly conserved Trypanosoma cruzi antigens for the development of a universal serological diagnostic assay

, ORCID Icon & ORCID Icon
Article: 2315964 | Received 23 Aug 2023, Accepted 04 Feb 2024, Published online: 21 Feb 2024

References

  • Chagas disease (American trypanosomiasis) [Fact Sheet]. World Health Organization (WHO); 2021 [updated 2021 Apr]. Available from: https://www.who.int/news-room/fact-sheets/detail/Chagas-disease-(american-trypanosomiasis)
  • Lee BY, Bacon KM, Bottazzi ME, et al. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis. 2013;13(4):342–348. doi:10.1016/S1473-3099(13)70002-1
  • Zingales B, Andrade SG, Briones MR, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104(7):1051–1054. doi:10.1590/S0074-02762009000700021
  • Marcili A, Lima L, Cavazzana M, et al. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology. 2009;136(6):641–655. doi:10.1017/S0031182009005861
  • Perez CJ, Lymbery AJ, Thompson RC. Chagas disease: the challenge of polyparasitism? Trends Parasitol. 2014;30(4):176–182. doi:10.1016/j.pt.2014.01.008
  • Sánchez-Camargo CL, Albajar-Viñas P, Wilkins PP, et al. Comparative evaluation of 11 commercialized rapid diagnostic tests for detecting Trypanosoma cruzi antibodies in Serum Banks in areas of endemicity and nonendemicity. 2014.
  • Bartsch SM, Avelis CM, Asti L, et al. The economic value of identifying and treating Chagas disease patients earlier and the impact on Trypanosoma cruzi transmission. PLoS Negl Trop Dis. 2018;12(11):e0006809. doi:10.1371/journal.pntd.0006809
  • Sosa-Estani S, Gamboa-León MR, del Cid-Lemus J, et al. Use of a rapid test on umbilical cord blood to screen for Trypanosoma cruzi infection in pregnant women in Argentina, Bolivia, Honduras, and México. Am J Trop Med Hyg. 2008;79(5):755–759. doi:10.4269/ajtmh.2008.79.755
  • Guzman-Gomez D, Lopez-Monteon A, de la Soledad Lagunes-Castro M, et al. Highly discordant serology against Trypanosoma cruzi in central Veracruz, Mexico: role of the antigen used for diagnostic. Parasit Vectors. 2015;8:466. doi:10.1186/s13071-015-1072-2
  • Whitman JD, Bulman CA, Gunderson EL, et al. Chagas disease serological test performance in U.S. blood donor specimens. J Clin Microbiol. 2019;57(12):e01217–19. doi:10.1128/JCM.01217-19
  • Kelly EA, Bulman CA, Gunderson EL, et al. Comparative performance of latest-generation and FDA-cleared serology tests for the diagnosis of Chagas disease. J Clin Microbiol. 2021;59(6):e00158–21. doi:10.1128/JCM.00158-21
  • Truyens C, Dumonteil E, Alger J, et al. Geographic variations in test reactivity for the serological diagnosis of Trypanosoma cruzi infection. J Clin Microbiol. 2021: JCM0106221.
  • Verani JR, Seitz A, Gilman RH, et al. Geographic variation in the sensitivity of recombinant antigen-based rapid tests for chronic Trypanosoma cruzi infection. Am J Trop Med Hyg. 2009;80(3):410–415. doi:10.4269/ajtmh.2009.80.410
  • Eguez KE, Alonso-Padilla J, Teran C, et al. Rapid diagnostic tests duo as alternative to conventional serological assays for conclusive Chagas disease diagnosis. PLoS Negl Trop Dis. 2017;11(4):e0005501. doi:10.1371/journal.pntd.0005501
  • Castro-Sesquen YE, Saldana A, Patino Nava D, et al. Evaluation of 2 lateral flow rapid tests in the diagnosis of Chagas disease in the Washington Metropolitan Area. Open Forum Infect Dis. 2021;8(4):ofab096.
  • Mita-Mendoza NK, McMahon E, Kenneson A, et al. Chagas disease in southern Coastal Ecuador: coinfections with arboviruses and a comparison of serological assays for Chagas disease diagnosis. Am J Trop Med Hyg. 2018;99(6):1530–1533. doi:10.4269/ajtmh.18-0441
  • Talavera-López C, Messenger LA, Lewis MD, et al. Repeat-driven generation of antigenic diversity in a major human pathogen Trypanosoma cruzi. bioRxiv [Internet]. 2018.
  • Llewellyn MS, Miles MA, Carrasco HJ, et al. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog. 2009;5(5):e1000410. doi:10.1371/journal.ppat.1000410
  • Majeau A, Murphy L, Herrera C, et al. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: implications for disease epidemiology and diagnostics. Pathogens. 2021;10:212. doi:10.3390/pathogens10020212
  • Roellig DM, Savage MY, Fujita AW, et al. Genetic variation and exchange in Trypanosoma cruzi isolates from the United States. PLoS One. 2013;8(2):e56198. doi:10.1371/journal.pone.0056198
  • Llewellyn MS, Lewis MD, Acosta N, et al. Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease. PLoS Negl Trop Dis. 2009;3(9):e510. doi:10.1371/journal.pntd.0000510
  • Schwabl P, Maiguashca Sánchez J, Costales JA, et al. Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity. PLoS Genet. 2020;16(12):e1009170. doi:10.1371/journal.pgen.1009170
  • Reis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, et al. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genom. 2018;19(1):816. doi:10.1186/s12864-018-5198-4
  • Gruber A, Zingales B. Trypanosoma cruzi: characterization of two recombinant antigens with potential application in the diagnosis of Chagas’ disease. Exp Parasitol. 1993;76(1):1–12. doi:10.1006/expr.1993.1001
  • Carmona SJ, Nielsen M, Schafer-Nielsen C, et al. Towards high-throughput immunomics for infectious diseases: use of next-generation peptide microarrays for rapid discovery and mapping of antigenic determinants. Mol Cell Proteomics. 2015;14(7):1871–1884. doi:10.1074/mcp.M114.045906
  • Buekens P, Cafferata ML, Alger J, et al. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: an observational prospective study. Am J Trop Med Hyg. 2018;98(2):478–485. doi:10.4269/ajtmh.17-0516
  • Elmayan A, Tu W, Duhon B, et al. High prevalence of Trypanosoma cruzi infection in shelter dogs from southern Louisiana, USA. Parasit Vectors. 2019;12(1):322. doi:10.1186/s13071-019-3572-y
  • Sanchez B, Monteon V, Reyes PA, et al. Standardization of micro-enzymes-linked immunosorbent assay (ELISA) and western blot for detection of Trypanosoma cruzi antibodies using extracts from mexican strains as antigens. Arch Med Res. 2001;32:382–388. doi:10.1016/S0188-4409(01)00303-4
  • Gamboa-Leon R, Gonzalez-Ramirez C, Padilla-Raygoza N, et al. Do commercial serologic tests for Trypanosoma cruzi infection detect Mexican strains in women and newborns? J Parasitol. 2011;97(2):338–343. doi:10.1645/GE-2545.1
  • Ricci AD, Bracco L, Salas-Sarduy E, et al. The Trypanosoma cruzi Antigen and Epitope Atlas: antibody specificities in Chagas disease patients across the Americas. Nat Commun. 2023;14(1):1850. doi:10.1038/s41467-023-37522-9
  • Kamath K, Reifert J, Johnston T, et al. Antibody epitope repertoire analysis enables rapid antigen discovery and multiplex serology. Sci Rep. 2020;10(1):5294. doi:10.1038/s41598-020-62256-9
  • Mucci J, Carmona SJ, Volcovich R, et al. Next-generation ELISA diagnostic assay for Chagas disease based on the combination of short peptidic epitopes. PLoS Negl Trop Dis. 2017;11(10):e0005972. doi:10.1371/journal.pntd.0005972
  • Santos FL, Celedon PA, Zanchin NI, et al. Performance assessment of four chimeric Trypanosoma cruzi Antigens based on antigen-antibody detection for diagnosis of chronic Chagas disease. PLoS One. 2016;11(8):e0161100. doi:10.1371/journal.pone.0161100
  • Otani MM, Vinelli E, Kirchhoff LV, et al. WHO comparative evaluation of serologic assays for Chagas disease. Transfusion. 2009;49(6):1076–1082.
  • Darling AE, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5(6):e11147. doi:10.1371/journal.pone.0011147
  • Majeau A, Murphy L, Herrera C, et al. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: implications for disease epidemiology and diagnostics. Pathogens. 2021;10(2):212. doi:10.3390/pathogens10020212
  • Buekens P, Cafferata ML, Alger J, et al. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: an observational prospective study. Am J Trop Med Hyg. 2018;98(2):478–485. doi:10.4269/ajtmh.17-0516
  • Moser DR, Kirchhoff LV, Donelson JE. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol. 1989;27(7):1477–1482. doi:10.1128/jcm.27.7.1477-1482.1989
  • Wincker P, Britto C, Pereira JB, et al. Use of a simplified polymerase chain reaction procedure to detect Trypanosoma cruzi in blood samples from Chronic Chagasic patients in a rural endemic area. Am J Trop Med Hyg. 1994;51(6):771–777. doi:10.4269/ajtmh.1994.51.771
  • Buekens P, Cafferata ML, Alger J, et al. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: an observational prospective study. Am J Trop Med Hyg. 2018;98(2):478–485. doi:10.4269/ajtmh.17-0516
  • Truyens C, Dumonteil E, Alger J, et al. Geographic variations in test reactivity for the serological diagnosis of Trypanosoma cruzi infection. J Clin Microbiol. 2021;59(12):e0106221. doi:10.1128/JCM.01062-21
  • Murphy N, Macchiaverna NP, Victoria Cardinal M, et al. Lineage-specific rapid diagnostic tests can resolve Trypanosoma cruzi TcII/V/VI ecological and epidemiological associations in the Argentine Chaco. Parasit Vectors. 2019;12(1):424. doi:10.1186/s13071-019-3681-7
  • Herrera C, Truyens C, Dumonteil E, et al. Phylogenetic analysis of Trypanosoma cruzi from pregnant women and newborns from Argentina, Honduras and Mexico suggests an association of parasite haplotypes with congenital transmission of the parasite. J Mol Diag. 2019;21(6):1095–1105. doi:10.1016/j.jmoldx.2019.07.004
  • Dent AE, Nakajima R, Liang L, et al. Plasmodium falciparum protein microarray antibody profiles correlate with protection from symptomatic Malaria in Kenya. J Infect Dis. 2015;212(9):1429–1438. doi:10.1093/infdis/jiv224
  • Baum E, Badu K, Molina DM, et al. Protein microarray analysis of antibody responses to Plasmodium falciparum in western Kenyan highland sites with differing transmission levels. PLoS One. 2013;8(12):e82246. doi:10.1371/journal.pone.0082246
  • Mutapi F, Burchmore R, Mduluza T, et al. Age-related and infection intensity-related shifts in antibody recognition of defined protein antigens in a schistosome-exposed population. J Infect Dis. 2008;198(2):167–175. doi:10.1086/589511
  • Dendrou CA, Petersen J, Rossjohn J, et al. HLA variation and disease. Nat Rev Immunol. 2018;18(5):325–339. doi:10.1038/nri.2017.143
  • Viotti R, Vigliano C, Alvarez MG, et al. Impact of aetiological treatment on convenional and multiplex serology in chronic Chagas disease. PLoS Negl Trop Dis. 2011;5(9):e1314. doi:10.1371/journal.pntd.0001314
  • Jurado Medina L, Chassaing E, Ballering G, et al. Prediction of parasitological cure in children infected with Trypanosoma cruzi using a novel multiplex serological approach: an observational, retrospective cohort study. Lancet Infect Dis. 2021;21(8):1141–1150. doi:10.1016/S1473-3099(20)30729-5