1,184
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Unveiling the pathogenic mechanisms of Clostridium perfringens toxins and virulence factors

, , , &
Article: 2341968 | Received 28 Dec 2023, Accepted 06 Apr 2024, Published online: 27 Apr 2024

References

  • Li J, Paredes-Sabja D, Sarker MR, et al. Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr. 2016: 331–347. doi:10.1128/microbiolspec
  • Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018;7(1):1–15. doi:10.1038/s41426-018-0144-8
  • Grass JE, Gould LH, Mahon BE. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States. Foodborne Pathog Dis.1998–2010. 2013;10(2):131–136. doi:10.1089/fpd.2012.1316
  • Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States major pathogens. Emerg Infect Dis. 2011;17(1):7, doi:10.3201/eid1701.p11101
  • Mahamat Abdelrahim A, Radomski N, Delannoy S, et al. Large-scale genomic analyses and toxinotyping of Clostridium perfringens implicated in foodborne outbreaks in France. Front Microbiol. 2019;10:777, doi:10.3389/fmicb.2019.00777
  • Bhattacharya A, Shantikumar S, Beaufoy D, et al. Outbreak of Clostridium perfringens food poisoning linked to leeks in cheese sauce: an unusual source. Epidemiol Infect. 2020: 148, doi:10.1017/S095026882000031X
  • Rood JI, Adams V, Lacey J, et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 2018;53:5–10. doi:10.1016/j.anaerobe.2018.04.011
  • Gohari IM, Navarro AM, Li J, et al. Pathogenicity and virulence of Clostridium perfringens. Virulence. 2021;12(1):723–753. doi:10.1080/21505594.2021
  • Li J, Adams V, Bannam TL, et al. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev. 2013;77(2):208–233. doi:10.1128/MMBR.00062-12
  • Adams V, Han X, Lyras D, et al. Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens. Plasmid. 2018;99:32–39. doi:10.1016/j.plasmid.2018.07.002
  • Kiu R, Shaw AG, Sim K, et al. Particular genomic and virulence traits associated with preterm infant-derived toxigenic Clostridium perfringens strains. Nat Microbiol. 2023: 1–16. doi:10.1038/s41564-023-01385-z
  • Revitt-Mills S, Lao C, Archambault M, et al. The Tcp plasmids of Clostridium perfringens require the resP gene to ensure stable inheritance. Plasmid. 2020;107:102461, doi:10.1016/j.plasmid.2019.102461
  • Watts TD, Traore DA, Atkinson SC, et al. The Specificity of ParR Binding Determines the Incompatibility of Conjugative Plasmids in Clostridium perfringens. mBio. 2022;13(4):e01356-22, doi:10.1128/mbio.01356-22
  • Ueda K, Kawahara K, Kimoto N, et al. Analysis of the complete genome sequences of Clostridium perfringens strains harbouring the binary enterotoxin BEC gene and comparative genomics of pCP13-like family plasmids. BMC Genomics. 2022;23(1):1–14. doi:10.1186/s12864-022-08453-4
  • Watts TD, Vidor CJ, Awad MM, et al. pCP13, a representative of a new family of conjugative toxin plasmids in Clostridium perfringens. Plasmid. 2019;102:37–45. doi:10.1016/j.plasmid.2019.02.002
  • Gibert M, Jolivet-Reynaud C, Popoff MR. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997;203(1):65–73. doi:10.1016/s0378-1119(97)00493-9
  • Yonogi S, Matsuda S, Kawai T, et al. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun. 2014;82(6):2390–2399. doi:10.1128/IAI.01759-14
  • Kiu R, Sim K, Shaw A, et al. Genomic analysis of Clostridium perfringens BEC/CPILE-positive, toxinotype D and E strains isolated from healthy children. Toxins (Basel). 2019;11(9):543, doi:10.3390/toxins11090543
  • Garnier T, Cole ST. Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. Plasmid. 1988;19(2):134–150. doi:10.1016/0147-619x(88)90052-2
  • Gulliver EL, Adams V, Marcelino VR, et al. Extensive genome analysis identifies novel plasmid families in Clostridium perfringens. Microb Genom. 2023;9(4), doi:10.1099/mgen.0.000995
  • Brynestad S, Sarker MR, McClane BA, et al. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect Immun. 2001;69(5):3483–3487. doi:10.1128/IAI.69.5.3483-3487.2001
  • Carroll AC, Wong A. Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol. 2018;64(5):293–304. doi:10.1139/cjm-2017-0609
  • Kumar R, Feltrup TM, Kukreja RV, et al. Evolutionary features in the structure and function of bacterial toxins. Toxins (Basel). 2019;11(1):15, doi:10.3390/toxins11010015
  • Oda M, Terao Y, Sakurai J, et al. Membrane-binding mechanism of Clostridium perfringens alpha-toxin. Toxins (Basel). 2015;7(12):5268–5275. doi:10.3390/toxins7124880
  • Nagahama M, Mukai M, Morimitsu S, et al. Role of the C-domain in the biological activities of Clostridium perfringens alpha-toxin. Microbiol Immunol. 2002;46(10):647–655. doi:10.1111/j.1348-0421.2002.tb02748.x
  • Naylor CE, Eaton JT, Howells A, et al. Structure of the key toxin in gas gangrene. Nat Struct Biol. 1998;5(8):738–746. doi:10.1038/1447
  • Xu C, She Y, Lin Y, et al. Molecular structure and function of the carboxy-terminus of the alpha-toxin from Clostridium perfringens type A. J Anim Physiol Anim Nutr (Berl), doi:10.1111/jpn.13274
  • Sakurai J, Duncan CL. Some properties of beta-toxin produced by Clostridium perfringens type C. Infect Immun. 1978;21(2):678–680. doi:10.1128/iai.21.2.678-680.1978
  • Stiles BG, Barth G, Barth H, et al. Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man? Toxins (Basel). 2013 Nov 12;5(11):2138–2160. doi:10.3390/toxins5112138
  • Perelle S, Gibert M, Boquet P, et al. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun. 1993;61(12):5147–5156. doi:10.1128/iai.61.12.5147-5156.1993
  • Kitadokoro K, Nishimura K, Kamitani S, et al. Crystal structure of Clostridium perfringens enterotoxin displays features of β-pore-forming toxins. J Biol Chem. 2011;286(22):19549–19555. doi:10.1074/jbc.M111.228478
  • Rood JI, Keyburn AL, Moore RJ. NetB and necrotic enteritis: the hole movable story. Avian Pathol. 2016;45(3):295–301. doi:10.1080/03079457.2016.1158781
  • Verherstraeten S, Goossens E, Valgaeren B, et al. Perfringolysin O: the underrated Clostridium perfringens toxin? Toxins (Basel). 2015;7(5):1702–1721. doi:10.3390/toxins7051702
  • Benz R, Piselli C, Hoxha C, et al. Clostridium perfringens Beta2 toxin forms highly cation-selective channels in lipid bilayers. Eur Biophys J. 2022;51(1):15–27. doi:10.1007/s00249-021-01577-7
  • Garcia NM, Cai J. Aggressive soft tissue infections. Surg Clin North Am. 2018;98(5):1097–1108. doi:10.1016/j.suc.2018.05.001
  • Uzal FA, Freedman JC, Shrestha A, et al. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014;9(3):361–377. doi:10.2217/fmb.13.168
  • Chakravorty A, Awad MM, Hiscox TJ, et al. The cysteine protease α-Clostripain is not essential for the pathogenesis of Clostridium perfringens-mediated myonecrosis. PLoS One. 2011; 6(7):e22762, doi:10.1371/journal.pone.0022762
  • Alves GG, de Ávila RAM, Chávez-Olórtegui CD, et al. Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known. Anaerobe. 2014;30:102–107. doi:10.1016/j.anaerobe.2014.08.016
  • Roos S, Wyder M, Candi A, et al. Binding studies on isolated porcine small intestinal mucosa and in vitro toxicity studies reveal lack of effect of C. perfringens beta-toxin on the porcine intestinal epithelium. Toxins (Basel). 2015;7(4):1235–1252. doi:10.3390/toxins7041235
  • Songer JG, Miskimins DW. Clostridial abomasitis in calves: case report and review of the literature. Anaerobe. 2005;11(5):290–294. doi:10.1016/j.anaerobe.2004.12.004
  • Uzal FA, Vidal JE, McClane BA, et al. Clostridium perfringens toxins involved in mammalian veterinary diseases. Open Toxinology J. 2010;2:24, doi:10.2174/1875414701003020024
  • Revitt-Mills SA, Rood JI, Adams V. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microb. Australia. 2015;36(3):114–117. doi:10.1071/MA15039
  • Gohari IM, Parreira VR, Nowell VJ, et al. A novel pore-forming toxin in type A Clostridium perfringens is associated with both fatal canine hemorrhagic gastroenteritis and fatal foal necrotizing enterocolitis. PLoS One. 2015;10(4):e0122684, doi:10.1371/journal.pone.0122684
  • Keyburn AL, Bannam TL, Moore RJ, et al. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins (Basel). 2010;2(7):1913–1927. doi:10.3390/toxins2071913
  • Coursodon C, Glock R, Moore K, et al. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe. 2012;18(1):117–121. doi:10.1016/j.anaerobe.2011.10.001
  • Van Damme L, Cox N, Callens C, et al. Protein truncating variants of colA in Clostridium perfringens type G strains. Front Cell Infect Microbiol. 2021: 11, doi:10.3389/fcimb.2021.645248
  • Wang YH. Sialidases from Clostridium perfringens and their inhibitors. Front Cell Infect Microbiol. 2020;9:462, doi:10.3389/fcimb.2019.00462
  • Li J, McClane BA. NanH Is Produced by Sporulating Cultures of Clostridium perfringens Type F Food Poisoning Strains and Enhances the Cytotoxicity of C. perfringens Enterotoxin. mSphere. 2021;6(2):e00176–21. doi:10.1128/mSphere.00176-21
  • Hynes WL, Walton SL. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett. 2000;183(2):201–207. doi:10.1111/j.1574-6968.2000.tb08958.x
  • Canard B, Garnier T, Saint-Joanis B, et al. Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens. Mol Gen Genet. 1994;243(2):215–224. doi:10.1007/BF00280319
  • Oda M, Kabura M, Takagishi T, et al. Clostridium perfringens alpha-toxin recognizes the GM1a-TrkA complex. J Biol Chem. 2012;287(39):33070–33079. doi:10.1074/jbc.M112.393801
  • Takagishi T, Oda M, Kabura M, et al. Clostridium perfringens alpha-toxin induces Gm1a clustering and Trka phosphorylation in the host cell membrane. PLoS One. 2015;10(4):e0120497, doi:10.1371/journal.pone.0120497
  • Lencer WI. Everything Illuminated-Clostridium perfringens β-toxin. Cell Host Microbe. 2020;28(1):5–6. doi:10.1016/j.chom.2020.06.006
  • Bruggisser J, Tarek B, Wyder M, et al. CD31 (PECAM-1) serves as the endothelial cell-specific receptor of clostridium perfringens β-toxin. Cell Host Microbe. 2020;28(1):69–78. e6. doi:10.1016/j.chom.2020.05.003
  • Goldstein J, Morris WE, Loidl CF, et al. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats. PLoS One. 2009;4(9):e7065, doi:10.1371/journal.pone.0007065
  • Schmidt G, Papatheodorou P, Aktories K. Novel receptors for bacterial protein toxins. Curr Opin Microbiol. 2015;23:55–61. doi:10.1016/j.mib.2014.11.003
  • Richard JF, Mainguy G, Gibert M, et al. Transcytosis of iota-toxin across polarized CaCo-2 cells. Mol Microbiol. 2002;43(4):907–917. doi:10.1046/j.1365-2958.2002.02806.x
  • Redondo LM, Redondo EA, Dailoff GC, et al. Effects of Clostridium perfringens iota toxin in the small intestine of mice. Anaerobe. 2017;48:83–88. doi:10.1016/j.anaerobe.2017.07.007
  • Freedman JC, Shrestha A, McClane BA. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel). 2016;8(3):73, doi:10.3390/toxins8030073
  • Eichner M, Augustin C, Fromm A, et al. In colon epithelia, Clostridium perfringens enterotoxin causes focal leaks by targeting claudins which are apically accessible due to tight junction derangement. J Infect Dis. 2018;217(1):147–157. doi:10.1093/infdis/jix485
  • Sonoda N, Furuse M, Sasaki H, et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol. 1999;147(1):195–204. doi:10.1083/jcb.147.1.195
  • Deguchi A, Miyamoto K, Kuwahara T, et al. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains. PLoS One. 2009;4(5):e5598, doi:10.1371/journal.pone.0005598
  • Ellemor DM, Baird RN, Awad MM, et al. Use of genetically manipulated strains of Clostridium perfringens reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Infect Immun. 1999;67(9):4902–4907. doi:10.1128/IAI.67.9.4902-4907.1999
  • Bryant AE, Chen RY, Nagata Y, et al. Clostridial Gas Gangrene. II. Phospholipase C-Induced Activation of Platelet gpIIbIIIa Mediates Vascular Occlusion and Myonecrosis in Clostridium perfringens Gas Gangrene. J Infect Dis. 2000;182(3):808–815. doi:10.1086/315757
  • Bryant AE, Stevens DL. Clostridial myonecrosis: new insights in pathogenesis and management. Curr Infect Dis Rep. 2010;12(5):383–391. doi:10.1007/s11908-010-0127-y
  • Bryant A, Bayer C, Aldape M, et al. Clostridium perfringens phospholipase C-induced platelet/leukocyte interactions impede neutrophil diapedesis. J Med Microbiol. 2006;55(5):495–504. doi:10.1099/jmm.0.46390-0
  • Gurjar AA, Yennawar NH, Yennawar HP, et al. Expression, crystallization and preliminary X-ray diffraction studies of recombinant Clostridium perfringens β2-toxin. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(6):484–487. doi:10.1107/S1744309107020313
  • Titball RW, Naylor CE, Basak AK. The Clostridium perfringens α-toxin. Anaerobe. 1999;5(2):51–64. doi:10.1006/anae.1999.0191
  • Takehara M, Bandou H, Kobayashi K, et al. Clostridium perfringens α-toxin specifically induces endothelial cell death by promoting ceramide-mediated apoptosis. Anaerobe. 2020;65:102262, doi:10.1016/j.anaerobe.2020
  • Theoret JR, Uzal FA, McClane BA, et al. Identification and characterization of Clostridium perfringens beta toxin variants with differing trypsin sensitivity and in vitro cytotoxicity activity. Infect Immun. 2015;83(4):1477–1486. doi:10.1128/IAI.02864-14
  • Freedman JC, Li J, Uzal FA, et al. Proteolytic processing and activation of Clostridium perfringens epsilon toxin by caprine small intestinal contents. mBio. 2014;5(5):e01994–14. doi:10.1128/mBio.01994-14
  • Dorca-Arévalo J, Gómez de Aranda I, Blasi J. New mutants of epsilon toxin from Clostridium perfringens with an altered receptor-binding site and cell-type specificity. Toxins (Basel). 2022;14(4):288, doi:10.3390/toxins14040288
  • Diancourt L, Sautereau J, Criscuolo A, et al. Two Clostridium perfringens type E isolates in France. Toxins (Basel). 2019;11(3):138, doi:10.3390/toxins11030138
  • Collie RE, Kokai-Kun JF, McClane BA. Phenotypic Characterization of Enterotoxigenic Clostridium perfringens Isolates from Non-foodborne Human Gastrointestinal Diseases. Anaerobe. 1998;4(2):69–79. doi:10.1006/anae.1998.0152
  • Sparks SG, Carman RJ, Sarker MR, et al. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. J Clin Microbiol. 2001;39(3):883–888. doi:10.1128/JCM.39.3.883-888.2001
  • Keyburn AL, Yan XX, Bannam TL, et al. Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Vet Res. 2010;41(2), doi:10.1051/vetres/2009069
  • Tweten RK. Nucleotide sequence of the gene for perfringolysin O (theta-toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysin. Infect Immun. 1988;56(12):3235–3240. doi:10.1128/iai.56.12.3235-3240.1988
  • Jost BH, Billington SJ, Trinh HT, et al. Atypical cpb2 genes, encoding beta2-toxin in Clostridium perfringens isolates of nonporcine origin. Infect Immun. 2005;73(1):652–656. doi:10.1128/IAI.73.1.652-656.2005