18
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Unveiling the potential of Bakuchiol-A comprehensive review on pharmacological activities and therapeutic formulations

, , , , , , & show all
Pages 134-160 | Received 29 Mar 2024, Accepted 17 Apr 2024, Published online: 30 Apr 2024

References

  • Adhikari, S., Joshi, R., Patro, B.S., Ghanty, T.K., Chintalwar, G.J., Sharma, A., Chatto-padhyay, S., Mukherjee, T. (2003). Antioxidant activity of bakuchiol: experimental evidences and theoretical treatments on the possible involvement of the terpenoid chain. Chem. Res. Toxicol. 16(9): 1062-1069.
  • Chaudhuri, R.K., Bojanowski, K. (2014). Bakuchiol: a retinol-like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects. Int. J. Cosmet. Sci. 36(3): 221-230.
  • Puyana, C., Chandan, N., Tsoukas, M. (2022). Applications of bakuchiol in dermatology: Systematic review of the literature. J. Cosmet. Dermatol. 21(12): 36-43.
  • Krishna, T.A., Edachery, B., Athalathil, S. (2022). Bakuchiol-a natural meroterpenoid: structure, isolation, synthesis and functionali-zation approaches. RSC Adv. 12(14): 8815-8832.
  • Labbé, C., Faini, F., Coll, J., Connolly, J.D. (1996). Bakuchiol derivatives from the leaves of Psoralea glandulosa. Phytochem. 42(5): 1299-1303.
  • Alam, F., Khan, G.N., Asad, M.H., H.B. (2018). Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review. Phytother. Res. 32(4): 597-615.
  • Xin, Z., Wu, X., Ji, T., Xu, B., Han, Y., Sun, M., Yang, Y. (2019). Bakuchiol: A newly discovered warrior against organ damage. Pharmacol. Res. 141: 208-213.
  • Jafernik, K., Halina, E., Ercisli, S., Szopa, A. (2021). Characteristics of bakuchiol-the compound with high biological activity and the main source of its acquisition-Cullen corylifolium (L.) Medik. Nat. Prod. Res. 35(24): 5828-5842.
  • Rao, G.V., Kavitha, K., Gopalakrishnan, M., Mukhopadhyay, T. (2012). Isolation and characterization of a potent antimicrobial compound from Aerva sanguinolenta Blume: An alternative source of bakuchiol. J. Pharm. Res. 5(1): 174-176.
  • Hsu, P.J., Miller, J.S., Berger, J.M. (2009). Bakuchiol, an antibacterial component of Psoralidium tenuiflorum. Nat. Prod. Res. 23(8): 781-788.
  • Kurpet, K., Chwatko, G. (2023). Development of a new chromatographic method for the determination of bakuchiol in cosmetic products. Sci. Rep. 13(1): 138-193.
  • Krenisky, J.M., Luo, J., Reed, M.J., Carney, J.R. (1999). Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae), a Peruvian medicinal plant used for the treatment of diabetes. Biol. Pharm. Bull. 22(10): 1137-1140.
  • Lystvan, K., Belokurova, V., Sheludko, Y., Ingham, J.L., Prykhodko, V., Kishchenko, O., Kuchuk, M. (2010). Production of bakuchiol by in vitro systems of Psoralea drupacea Bge. Plant Cell Tiss. Org. 101: 99-103.
  • Nizam, N.N., Mahmud, S., Ark, S.A., Kamruzzaman, M., Hasan, M.K. (2023). Bakuchiol, a natural constituent and its pharmacological benefits. F1000Res. 12: 29.
  • Choi, S.Y., Lee, S., Choi, W.H., Lee, Y., Jo, Y.O., Ha, T.Y. (2010). Isolation and anti-inflammatory activity of Bakuchiol from Ulmus davidiana var. japonica. J. Med. Food. 13(4): 1019-1023.
  • Ohno, O., Watabe, T., Nakamura, K., Kawagoshi, M., Uotsu, N., Chiba, T., Uemura, D. (2010). Inhibitory effects of bakuchiol, bavachin, and isobavachalcone isolated from Piper longum on melanin production in B16 mouse melanoma cells. Biosci. Biotechnol. Biochem. 74(7): 1504-1506.
  • Sarker, J., Ali, M.R., Khan, M.A., Rahman, M.M., Hossain, A.S., Alam, A.K. (2019). The plant Aerva sanguinolenta: A review on traditional uses, phytoconstituents and pharmacological activities. Pharmacogn. Rev. 13(26): 89-92.
  • Lin, C.F., Huang, Y.L., Chien, M.Y., Sheu, S.J., Chen., C.C. (2007). Analysis of bakuchiol, psoralen and Angelicin in crude drugs and commercial concentrated products of Fructus psoraleae. J. Food Drug Anal. 15(4): 433-437.
  • Xu, Q., Lv, Q., Liu, L., Zhang, Y., Yang, X. (2021). New bakuchiol dimers from Psoraleae fructus and their inhibitory activities on nitric oxide production. Chin. Med. 16(1): 1-15.
  • Kostikova, V.A., Petrova, N.V. (2021). Phytoconstituents and bioactivity of plants of the genus Spiraea L. (Rosaceae): A review. Int. J. Mol. Sci. 22(20): 11-63.
  • Madrid, A., Espinoza, L., González, C., Mellado, M., Villena, J., Santander, R., Montenegro, I. (2012). Antifungal study of the resinous exudate and of meroterpenoids isolated from Psoralea glandulosa (Fabaceae). J. Ethnopharmacol. 144(3): 809-811.
  • Manohar, B., Udaya Sankar, K. (2009). Enrichment of bakuchiol in supercritical carbon dioxide extracts of chiba seed (Psoralea corylifolia L.) using molecular distillation-Response surface methodology. Biotechnol. Bioprocess Eng. 14: 112-117.
  • Gupta, N., Sangwan, P. L., Shankar, R., Gupta, S. (2023). Recent advances in the chemistry and biology of bakuchiol and its derivatives: An updated review. Anti-Cancer Agents Med. Chem. 23(7): 747-764.
  • Murray, R.D., Jorge, Z.D., Lawrie, K.W. (1983). Claisen rearrangements-X: Synthesis of the coumarins, hortiolone and hortinone. Tetrahedron. 39(19): 3159-3162.
  • Banerji, A., Chintalwar, G.J. (1983). Biosy-nthesis of bakuchiol, a meroterpene from Psoralea corylifolia. Phytochem. 22(9):1945-1947.
  • Thomsen, K.F., Bundgaard, H. (1993). Cyclization-activated phenyl carbamate prodrug forms for protecting phenols against first-pass metabolism. Int. J. Pharm. 91(1): 39-49.
  • Cariola, A., El Chami, M., Granatieri, J., Valgimigli, L. (2023). Anti-tyrosinase and anti-oxidant activity of meroterpene bakuchiol from Psoralea corylifolia (L.). Food Chem. 405: 1-11.
  • Quijas, G., Haliński, Ł.P., Gobis, K., Bojanowski, R., Bojanowski, K. (2023). Synthesis and new skin-relevant properties of the salicylic acid ester of bakuchiol. Nat. Prod. Chem. Res. 37(5): 734-742.
  • Ryu, S.Y., Choi, S.U., Lee, C.O., Zee, O.P. (1992). Antitumor activity of Psoralea corylifolia. Arch. Pharmacal Res. 15: 356-359.
  • Gupta, N., Sharma, S., Raina, A., Bhushan, S., Malik, F.A., Sangwan, P.L. (2017). Synthesis of Novel Mannich Derivatives of Bakuchiol as Apoptotic Inducer through Caspase Activation and PARP-1 Cleavage in A549 Cells. ChemistrySelect. 2(18): 5196-5201.
  • Kawashima, H., Kaneko, Y., Sakai, M., Kobayashi, Y. (2014). Synthesis of Cyclo-bakuchiols A, B, and C by Using Conformation-Controlled Stereoselective Reactions. Chem. Eur. J. 20(1): 272-278.
  • Gupta, N., Sharma, S., Raina, A., Dangroo, N.A., Bhushan, S., Sangwan, P.L. (2016). Synthesis and anti-proliferative evaluation of novel 3, 4-dihydro-2 H-1, 3-oxazine derivatives of bakuchiol. RCS Adv. 6(108): 106150-106159.
  • Mehta, G.N.U.R., Nayak, U.R., Dev, S. (1966). Bakuchiol, a novel monoterpenoid. Tetrahedron Lett. 7(38): 4561-4567.
  • Haraguchi, H., Inoue, J., Tamura, Y., Mizutani, K. (2000). Inhibition of mitochondrial lipid peroxidation by bakuchiol, a meroterpene from Psoralea corylifolia. Planta Med. 66(06): 569-571.
  • Chen, H., Du, X., Tang, W., Zhou, Y., Zuo, J., Feng, H., Li, Y. (2008). Synthesis and structure-immunosuppressive activity relationships of bakuchiol and its derivatives. Bioorg. Med. Chem. 16(5): 2403-2411.
  • Gautam, L.N., Ling, T., Lang, W., Rivas, F. (2016). Anti-proliferative evaluation of mono-terpene derivatives against leukemia. Eur. J. Med. Chem. 113: 75-80.
  • Cha, M.R., Choi, C.W., Lee, J.Y., Kim, Y.S., Yon, G.H., Choi, S.U., Ryu, S.Y. (2012). Anti-proliferative effect of synthesized bakuchiol analogues on cultured human tumor cell lines. Bull. Korean Chem. Soc. 33(7): 2378-2380.
  • Majeed, R., Reddy, M.V., Chinthakindi, P.K., Sangwan, P.L., Hamid, A., Chashoo, G., Saxena, A.K., Koul, S. (2012). Bakuchiol derivatives as novel and potent cytotoxic agents: A Report. Eur. J. Med. Chem. 49: 55-67.
  • Li, H., Liu, J., Liu, C.F., Li, H., Luo, J., Fang, S., Chen, Y., Zhong, R., Liu, S., Lin, S. (2021). Design, synthesis, and biological evaluation of membrane-active bakuchiol derivatives as effective broad-spectrum antibacterial agents. J. Med. Chem. 64(9): 5603-5619.
  • Zeng, Q., Chen, C., Chen, D., Zhang, G., Wang, X. (2023). Non-Surgical Therapeutic Strategies for Non-Melanoma Skin Cancers. Curr Treat Options Oncol. 24(12): 78-93.
  • Didona, D., Paolino, G., Bottoni, U., Cantisani, C. (2018). Non melanoma skin cancer patho-genesis overview. Biomedicines. 6(1): 6-8.
  • Diepgen, T.L., Mahler, V. (2002). The epide-miology of skin cancer. Br. J. Dermatol. 146(61s): 1-6.
  • Apalla, Z., Nashan, D., Weller, R.B., Castellsagué, X. (2017). Skin cancer: epidemio-logy, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb). 7: 5-19.
  • Madrid, A., Cardile, V., González, C., Montenegro, I., Villena, J., Caggia, S., Russo, A. (2015). Psoralea glandulosa as a potential source of anticancer agents for melanoma treat-ment. Int. J. Mol. Med. Adv. Sci. 16(4): 44-59.
  • Zolghadri, S., Bahrami, A., Hassan Khan, M.T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., Saboury, A.A. (2019). A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 34(1): 279-309.
  • Boo, Y.C. (2019). Human skin lightening efficacy of resveratrol and its analogs: from in vitro studies to cosmetic applications. Antioxidants. 8(9): 332.
  • Charoo, N.A. (2022). Hyperpigmentation: looking beyond hydroquinone. J Cosmet Dermatol. 21(10): 4133-4145.
  • Fisk, W.A., Agbai, O., Lev-Tov, H.A., Sivamani, R.K. (2014). The use of botanically derived agents for hyperpigmentation: a systematic review. J Am Acad Dermatol. 70(2): 352-65.
  • Pillaiyar, T., Manickam, M., Namasivayam, V. (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32(1):403-425.
  • Lebwohl, M.G., Bachelez, H., Barker, J., Girolomoni, G., Kavanaugh, A., Langley, R.G., Paul, C.F., Puig, L., Reich, K., van de Kerkhof, P.C. (2014). Patient perspectives in the management of psoriasis: results from the population-based Multinational Assessment of Psoriasis and Psoriatic Arthritis Survey. J. Am. Acad. Dermatol. 70(5): 871-881.
  • Rendon, A., Schäkel, K. (2019). Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 20(6): 1-28.
  • Lew, W., Bowcock, A.M., Krueger, J.G. (2004). Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and ‘Type 1’inflammatory gene expression. Trends Immunol. 25(6): 295-305.
  • Barygina, V., Becatti, M., Prignano, F., Lotti, T., Taddei, N., Fiorillo, C. (2019). Fibroblasts to keratinocytes redox signaling: The possible role of ROS in psoriatic plaque formation. Antioxidants. 8(11): 1-20.
  • Ma, S., Gobis, K., Swindell, W.R., Chaudhuri, R., Bojanowski, R., Bojanowski, K. (2017). Synthesis and activity of the salicylic acid ester of bakuchiol in psoriasis-surrogate keratinocytes and skin substitutes. Clin. Exp. Dermatol. 42(3): 251-260.
  • Lewis, K., Ausubel, F.M. (2006). Prospects for plant-derived antibacterials. Nat Biotechnol. 24(12): 1504-1507.
  • Katsura, H., Tsukiyama, R.I., Suzuki, A., Kobayashi, M. (2001). In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob Agents Chemother. 45(11): 3009-3013.
  • Khatune, N.A., Islam, M.E., Haque, M.E., Khondkar, P., Rahman, M.M., (2004). Antibacterial compounds from the seeds of Psoralea corylifolia. Fitoterapia. 75(2): 228-230.
  • Masuoka, J., Hazen, K.C. (2004). Cell wall mannan and cell surface hydrophobicity in Candida albicans serotype A and B strains. Infect. Immun. 72(11): 6230-6236.
  • Nordin, M.A.F., Razak, F.A., Himratul-Aznita, W.H. (2015). Assessment of antifungal activity of bakuchiol on oral-associated Candida spp. J. Evid. Based Complementary Altern. Med. 2015: 1-8.
  • Hazen, K.C., Glee, P.M. (1996). Cell surface hydrophobicity and medically important fungi. Curr. Top. Med. Mycol. 6: 1-31.
  • Kubo, M., Dohi, T., Odani, T., Tanaka, H., Iwamura, J. (1989). Cytotoxicity Kubo of Corylifoliae fructus. I. Isolation of the effective compound and the cytotoxicity. J. Pharm. Soc. Jpn. 109(12): 926 -931
  • Zouboulis, C.C., Makrantonaki. E., Nikolakis, G. (2019). When the skin is in the center of interest: an aging issue. Clin. Dermatol. 37(4): 296-305.
  • Hensley, K., Floyd, R.A. (2002). Reactive oxygen species and protein oxidation in aging: A look back, a look ahead. Arch. Biochem. Biophys. 397(2): 377-383.
  • Helfrich, Y.R., Sachs, D.L., Voorhees, J.J. (2008). Overview of skin aging and photoaging. Dermatol Nurs. 20(3): 117-184
  • Quan, T., He, T., Kang, S., Voorhees, J.J., Fisher, G.J. (2002). Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol 119(2): 499-506.
  • Narda, M., Brown, A., Muscatelli-Groux, B., Grimaud, J.A., Granger, C. (2020). Epide-rmal and dermal hallmarks of photoaging are prevented by treatment with night serum containing melatonin, bakuchiol, and ascorbyl tetraisopalmitate: in vitro and ex vivo studies. Dermatol. Ther. (Heidelb). 10(1): 191-202.
  • Bluemke, A., Ring, A.P., Immeyer, J., Hoff, A., Eisenberg, T., Gerwat, W., Schweiger, D. (2022). Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing-Experimental evidence for a holistic treatment approach. Int. J. Cosmet. Sci. 44(3): 377-393.
  • Leyden, J.J. (1995). New understandings of the pathogenesis of acne. J. Am. Acad. Dermatol. 32(5): 15-25.
  • Kurokawa, I., Danby, F.W., Ju, Q., Wang, X., Xiang, L.F., Xia, L., Zouboulis, C.C. (2009). New developments in our understanding of acne pathogenesis and treatment. Exp. Dermatol. 18(10): 821-832.
  • Chaudhuri, R.K. (2015). Bakuchiol: a retinol-like functional compound, modulating multiple retinol and non-retinol targets. Cosmeceuticals Act. Cosmet. 3: 1-8.
  • Nishijima, S., Kurokawa, I., Katoh, N., Watanabe, K. (2000). The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. J Dermatol. 27(5): 318-323.
  • Chaudhuri, R.K., Marchio, F. (2011). Bakuchiol in the management of acne-affected skin. Cosmet. Toiletries. 126(7): 502–509.
  • Pae, H.O., Cho, H., Oh, G.S., Kim, N.Y., Song, E.K., Kim, Y.C., Chung, H.T. (2001). Bakuchiol from Psoralea corylifolia inhibits the expression of inducible nitric oxide synthase gene via the inactivation of nuclear transcription factor-κB in RAW 264.7 macrophages. Int. Immunopharmacol. 1(9-10): 1849-1855.
  • Ferrándiz, M.L., Gil, B., Sanz, M.J., Ubeda, A., Erazo, S., González, E., Negrete, R., Pacheco, S., Payáa, M., Alcaraz, M.J. (1996). Effect of Bakuchiol on Leukocyte Functions and Some Inflammatory Responses in Mice. J. Pharm. Pharmaco. 48(9): 975-980.
  • Clark, J.M., Brancati, F.L., Diehl, A.M. (2002). Nonalcoholic fatty liver disease. Gastroenterology. 122(6): 1649-1657.
  • Anstee, Q.M., Targher, G., Day, C.P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10(6): 330-344.
  • Sumida, Y., Niki, E., Naito, Y., Yoshikawa, T. (2013). Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radical Res. 47(11): 869-880.
  • Seo, E., Oh, Y.S., Jun, H.S. (2016). Psoralea corylifolia L. Seed Extract Attenuates Nonalcoholic Fatty Liver Disease in High-Fat Diet-Induced Obese Mice. Nutrients. 8(2): 1-12.
  • Toye, A.A., Dumas, M.E., Blancher, C., Rothwell, A.R., Fearnside, J.F., Wilder, S.P., Bihoreau, M.T., Cloarec, O., Azzouzi, I., Young, S., Barton, R.H. (2007). Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice. Diabetologia. 50: 1867-1879.
  • Hong, Y., Choi, S.I., Hong, E., Kim, G.H. (2020). Psoralea corylifolia L. extract ameliorates nonalcoholic fatty liver disease in free-fatty-acid-incubated HEPG2 cells and in high-fat diet-fed mice. J. Food Sci. 85(7): 2216-2226.
  • Cho, H., Jun, J.Y., Song, E.K., Kang, K.H., Baek, H.Y., Ko, Y.S., Kim, Y.C. (2001). Bakuchiol: a hepatoprotective compound of Psoralea corylifolia on tacrine-induced cyto-toxicity in Hep G2 cells. Planta. Med. 67(08): 750-751.
  • Park, E.J., Zhao, Y.Z., Kim, Y.C., Sohn, D.H. (2005). Protective effect of (S)-bakuchiol from Psoralea corylifolia on rat liver injury in vitro and in vivo. Planta Med. 71(06): 508-513.
  • Park, E.J., Zhao, Y.Z., Kim, Y.C., Sohn, D.H. (2007). Bakuchiol-induced caspase-3-dependent apoptosis occurs through c-Jun NH2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts. Eur. J. Pharmacol. 559(2-3): 115-123.
  • Buja, L.M. (2013). The pathobiology of acute coronary syndromes: clinical implications and central role of the mitochondria. Tex. Heart Inst. J. 40(3): 221-228.
  • Murphy, E., Steenbergen, C. (2008). Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88(2): 581-609.
  • Gill, R., Kuriakose, R., Gertz, Z.M., Salloum, F.N., Xi, L., Kukreja, R.C. (2015). Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol. Cell Biochem. 402(1-2): 41-49.
  • Kubler, W., Haass, M. (1996). Cardioprotection: definition, classification, and fundamental principles. Heart. 75(4): 330-333.
  • Feng, J., Yang, Y., Zhou, Y., Wang, B., Xiong, H., Fan, C., Jiang, S., Liu, J., Ma, Z., Hu, W., Li, T. (2016). Bakuchiol attenuates myocardial ischemia reperfusion injury by maintaining mitochondrial function: the role of silent information regulator 1. Apoptosis. 21(5): 532–545.
  • Ma, W., Guo, W., Shang, F., Li, Y., Li, W., Liu, J., Ma, C., Teng, J. (2020). Bakuchiol Alleviates Hyperglycemia-Induced Diabetic Cardiomyo-pathy by Reducing Myocardial Oxidative Stress via Activating the SIRT1/Nrf2 Signaling Pathway. Oxid. Med. Cell. 2020: 1-15.
  • Jia, G., Whaley-Connell, A., Sowers, J.R. (2018). Diabetic cardiomyopathy: a hypergly-caemia- and insulin-resistance-induced heart disease. Diabetologia 61(1): 21-28.
  • Lewińska, A., Domżał-Kędzia, M., Maciejczyk, E., Łukaszewicz, M., Bazylińska, U. (2021). Design and engineering of “green” nanoemulsions for enhanced topical delivery of bakuchiol achieved in a sustainable manner: a novel eco-friendly approach to bioretinol. Int. J. Mol. Sci. 22(18): 1-19.
  • Pi, J., Gao, X., Yu, Y., Zheng, Y., Zhu, Z., Wang, Y. (2014). Self-micro emulsifying formulation improved intestinal absorption and oral bioavailability of bakuchiol. Arch. Pharm. Res. 1-11.
  • Faiyazuddin, M., Akhtar, N., Akhter, J., Suri, S., Shakeel, F., Shafiq, S., Mustafa, G. (2010). Production, characterization, in vitro and ex vivo studies of babchi oil-encapsulated nanostructured solid lipid carriers produced by a hot aqueous titration method. Pharmazie. 65(5): 348-355.
  • Wadhwa, G., Kumar, S., Mittal, V., Rao, R. (2019). Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. J. Food Drug Anal. 27(1): 60-70.
  • Alam, A., Alqarni, M.H., Foudah, A.I., Raish, M., Salkini, M.A. (2022). Babchi Oil-Based Nanoemulsion Hydrogel for the Management of Psoriasis: A Novel Energy Economic Approach Employing Biosurfactants. Gels. 8(12): 1-20.
  • Bhardwaj, S., Gaur, P.K., Tiwari, A. (2022). Development of topical nanoemulgel using combined therapy for treating psoriasis. Assay Drug Dev. Technol. 20(1): 42-54.
  • Kumar, S., Singh, K.K., Rao, R. (2019). Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J Microencapsul. 36(2): 140-155.
  • Kumar, S., Pooja, Trotta, F., Rao, R. (2018). Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics. 10(4): 1-18.
  • Marwaha, T.K. (2013). Formulation Develop-ment of Anti-psoriatic Topical Babchi Oil Emulgel. Res. Rev: J. Herbal Sci. 2: 1-10
  • Ali, J., Akhtar, N., Sultana, Y., Baboota, S., Ahuja, A. (2008). Antipsoriatic microemulsion gel formulations for topical drug delivery of babchi oil (Psoralea corylifolia). Methods Find. Exp. Clin. Pharmacol. 30(4): 277-285.
  • Putriana, N.A., Husni, P., Mita, S.R. (2024). Recent Advance Bakuchiol Application as a Potential Alternative to Retinol in Skincare and Cosmetics. Preprints. 2-14.
  • https://trualchemyskin.com/collections/all/products/retinol-reset
  • https://www.paulaschoice.com/clinical-0.3pct-retinol-and-2pct-bakuchiol-treatment/81B.html
  • https://www.isdin.com/en-US/face-care/3-in-1-night-serum-isdinceutics-melatonik-8429420114609.html
  • https://acure.com/products/radically-rejuvenating-dual-phase-bakuchiol-serum
  • https://www.styledotty.com/skincare/olehenriksen/ole-henriksen-goodnight-glow-retin-alt-sleeping-creme-50ml/
  • https://www.sephora.com/product/innbeauty-project-slushy-serum-moisturizer-crush-infused-with-bakuchiol-P471037
  • https://www.cocokind.com/products/retinol-alternative-sleep-mask
  • https://ernolaszlo.com/products/firming-cream
  • https://bybi.com/products/bakuchiol-skin-booster?variant=39402826367047
  • https://www.healthmug.com/product/nagarjun-mahamanjisthadi-kashaya-200ml/853159036
  • https://lotus-organics.com/products/bakuchiol-plant-retinol-miracle-face-oil-1?gad_source=1&gclid=CjwKCAjww_iwBhApEiwAuG6ccFFzqt0vD2yFe9gULGLzaPUYnSFOjqBMTCHUl8-NB-LM09z5-x3L5xoCiQAQAvD_BwE
  • https://dgayurvedic.com/product/shanker-bavchi-tail-bakuchi-tailam-skin-disorders/
  • https://www.lionayurvedic.com/product/bakuchi-bavchi-ghanvati/
  • https://www.sarvodayaayurved.com/add-to-cart.php?id=273
  • https://www.botanicalformulations.com/formulations/bioretinol-rewind-cosmetic-formulation-pdf?rq=bakuchiol
  • Rabie, A.B. (2008). US Patent US20040043089A1
  • Lin, H.C., Ding, Y.H., Chang, W.L., Chao, C.L., Huang, H.W., Lin, C.L. (2008). Taiwan Patent TWI298634B
  • Lin, H., Ding, X., Zhang, W., Zhao, J., Huang, X. (2009). Chinese Patent CN100479811C
  • Kim, S.J. (2006). US Patent US20060099284A1
  • Jia, Q., Hong, M.F. (2006). US patent US20060251749A1
  • Patell, V.M. (2008). Worldwide Patent WO2008007216A2
  • Choudhuri, R.K. (2017). Spanish Patent ES2622679T3
  • Thorel, J.L. (2013). French Patent FR2981275A1
  • Hong, M.F., Jia, Q., Brownell, L.A. (2012). US Patent US20120201769A1
  • Shapeti, D., Shapeti, M. (2016). US Patent no. US20160030498A1
  • Jimenez, F., Garcines, L., Goldsberry, S., Ibrulj, S. (2016). US Patent US9433587B2
  • Bojanowski, K. (2019). US Patent US10471035B2
  • Jimenez, F., Garcines, L., Goldsberry, S., Ibrulj, S. (2019). US Patent US10201509B2
  • Choudhuri, R.K. (2022). US Patent US11510885B2
  • Katta, V.K., Mallula, G.R., Haldorai, R. (2022). US Patent US20220193002A1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.