591
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Asymmetry of leaf internal structure affects PLSR modelling of anatomical traits using VIS-NIR leaf level spectra

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2292154 | Received 10 Nov 2022, Accepted 04 Dec 2023, Published online: 18 Dec 2023

References

  • Atzberger, C., Guérif, M., Baret, F., & Werner, W. (2010). Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture, 73(2), 165–11. https://doi.org/10.1016/j.compag.2010.05.006
  • Bandaru, V., Hansen, D. J., Codling, E. E., Daughtry, C. S., White-Hansen, S., & Green, C. E. (2010). Quantifying arsenic-induced morphological changes in spinach leaves: Implications for remote sensing. International Journal of Remote Sensing, 31(15), 4163–4177. https://doi.org/10.1080/01431161.2010.498453
  • Borsuk, A. M., & Brodersen, C. R. (2019). The spatial distribution of chlorophyll in leaves. Plant Physiology, 180(3), 1406–1417. https://doi.org/10.1104/pp.19.00094
  • Borsuk, A. M., Roddy, A. B., Théroux‐Rancourt, G., & Brodersen, C. R. (2022). Structural organization of the spongy mesophyll. New Phytologist, 234(3), 946–960. https://doi.org/10.1111/nph.17971
  • Burnett, A. C., Anderson, J., Davidson, K. J., Ely, K. S., Lamour, J., Li, Q., Morrison, B. D., Yang, D., Rogers, A., Serbin, S. P., & Lawson, T. (2021). A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. Journal of Experimental Botany, 72(18), 6175–6189. https://doi.org/10.1093/jxb/erab295
  • Buschmann, C., Lenk, S., & Lichtenthaler, H. K. (2012). Reflectance spectra and images of green leaves with different tissue structure and chlorophyll content. Israel Journal of Plant Sciences, 60(1), 49–64. https://doi.org/10.1560/IJPS.60.1-2.49
  • Caicedo, J. P. R., Verrelst, J., Muñoz-Marí, J., Moreno, J., & Camps-Valls, G. (2014). Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1249–1259. https://doi.org/10.1109/JSTARS.2014.2298752
  • Campbell, P. K. E., Huemmrich, K. F., Middleton, E. M., Ward, L. A., Julitta, T., Daughtry, C. S. T., Burkart, A., Russ, A. L., & Kustas, W. P. (2019). Diurnal and seasonal variations in chlorophyll fluorescence associated with photosynthesis at leaf and canopy scales. Remote Sensing, 11(5), 488. https://doi.org/10.3390/rs11050488
  • Campbell, P. K. E., Middleton, E. M., McMurtrey, J. E., Corp, L. A., & Chappelle, E. W. (2007). Assessment of vegetation stress using reflectance or fluorescence measurements. Journal of Environmental Quality, 36(3), 832–845. https://doi.org/10.2134/jeq2005.0396
  • Cao, K.-F. (2000). Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Canadian Journal of Botany, 78(10), 1245–1253. https://doi.org/10.1139/b00-096
  • Chavana-Bryant, C., Malhi, Y., Anastasiou, A., Enquist, B. J., Cosio, E. G., Keenan, T. F., & Gerard, F. F. (2019). Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees. Science of the Total Environment, 666, 1301–1315. https://doi.org/10.1016/j.scitotenv.2019.01.379
  • Chávez, R. O., Clevers, J. G. P. W., Verbesselt, J., Naulin, P. I., Herold, M., & Schumann, G. J. P. (2014). Detecting leaf pulvinar movements on NDVI time series of desert trees: A New approach for water stress detection. PLoS ONE, 9(9), e106613. https://doi.org/10.1371/journal.pone.0106613
  • Chen, L., Zhang, Y., Nunes, M. H., Stoddart, J., Khoury, S., Chan, A. H. Y., & Coomes, D. A. (2022). Predicting leaf traits of temperate broadleaf deciduous trees from hyperspectral reflectance: Can a general model be applied across a growing season? Remote Sensing of Environment, 269, 112767. https://doi.org/10.1016/j.rse.2021.112767
  • Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., & Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, 104(52), 20684–20689. https://doi.org/10.1073/pnas.0704716104
  • Eitel, J. U. H., Gessler, P. E., Smith, A. M. S., & Robberecht, R. (2006). Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. Forest Ecology and Management, 229(1–3), 170–182. https://doi.org/10.1016/j.foreco.2006.03.027
  • Evans, J. R., Caemmerer, S. V., Setchell, B. A., & Hudson, G. S. (1994). The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Functional Plant Biology, 21(4), 475–495.
  • Fu, P., Meacham-Hensold, K., Guan, K., & Bernacchi, C. J. (2019). Hyperspectral leaf reflectance as proxy for photosynthetic capacities: An ensemble approach based on multiple machine learning algorithms. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00730
  • Gastellu-Etchegorry, J. P., Martin, E., & Gascon, F. (2004). DART: A 3D model for simulating satellite images and studying surface radiation budget. International Journal of Remote Sensing, 25(1), 73–96. https://doi.org/10.1080/0143116031000115166
  • Gates, D., Keegan, H., Schleter, J., & Weidner, V. (1965). Spectral properties of plants. Applied Optics, 4(1), 11. https://doi.org/10.1364/AO.4.000011
  • Hallik, L., Kuusk, A., Lang, M., & Kuusk, J. (2019). Reflectance properties of Hemiboreal mixed forest canopies with focus on Red edge and near infrared spectral regions. Remote Sensing, 11(14), 1717. https://doi.org/10.3390/rs11141717
  • Hanba, Y. T., Miyazawa, S. I., Kogami, H., & Terashima, I. (2001). Effects of leaf age on internal CO2 transfer conductance and photosynthesis in tree species having different types of shoot phenology. Functional Plant Biology, 28(11), 1075–1084.
  • Hanba, Y. T., Miyazawa, S.-I., & Terashima, I. (1999). The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Functional Ecology, 13(5), 632–639. https://doi.org/10.1046/j.1365-2435.1999.00364.x
  • Heise, H. M., Damm, U., Lampen, P., Davies, A. N., & McIntyre, P. S. (2005). Spectral variable selection for partial least squares calibration applied to authentication and quantification of extra virgin olive oils using fourier transform raman Spectroscopy. Applied Spectroscopy, 59(10), 1286–1294. https://doi.org/10.1366/000370205774430927
  • He, N., Liu, C., Tian, M., Li, M., Yang, H., Yu, G., Guo, D., Smith, M. D., Yu, Q., Hou, J., & Niu, S. (2018). Variation in leaf anatomical traits from tropical to cold‐temperate forests and linkage to ecosystem functions. Functional Ecology, 32(1), 10–19. https://doi.org/10.1111/1365-2435.12934
  • Jacquemoud, S., & Baret, F. (1990). Prospect: A model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91. https://doi.org/10.1016/0034-4257(90)90100-Z
  • Jiang, J., Comar, A., Weiss, M., & Baret, F. (2021). FASPECT: A model of leaf optical properties accounting for the differences between upper and lower faces. Remote Sensing of Environment, 253, 112205. https://doi.org/10.1016/j.rse.2020.112205
  • Kallel, A. (2018). Leaf polarized BRDF simulation based on monte carlo 3-D vector RT modeling. Journal of Quantitative Spectroscopy and Radiative Transfer, 221, 202–224. https://doi.org/10.1016/j.jqsrt.2018.09.033
  • Kallel, A. (2020). FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 253, 107183. https://doi.org/10.1016/j.jqsrt.2020.107183
  • Kenzo, T., Ichie, T., Yoneda, R., Kitahashi, Y., Watanabe, Y., Ninomiya, I., & Koike, T. (2004). Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of dipterocarpaceae in a tropical rain forest. Tree Physiology, 24(10), 1187–1192. https://doi.org/10.1093/treephys/24.10.1187
  • Knapp, A. K., & Carter, G. A. (1998). Variability in leaf optical properties among 26 species from a broad range of habitats. American Journal of Botany, 85(7), 940–946. https://doi.org/10.2307/2446360
  • Lhotáková, Z., Kopačková-Strnadová, V., Oulehle, F., Homolová, L., Neuwirthová, E., Švik, M., Janoutová, R., & Albrechtová, J. (2021). Foliage biophysical trait prediction from laboratory spectra in Norway spruce is more affected by needle age than by site soil conditions. Remote Sensing, 13(3), 391. https://doi.org/10.3390/rs13030391
  • Liland, K. H., Mevik, B.-H., & Wehrens, R. (2022). Pls: Partial Least Squares and Principal component regression. R package version 2.8-1. https://CRAN.R-project.org/package=pls
  • Liu, C., Li, Y., Xu, L., Chen, Z., & He, N. (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9(1), 5803. https://doi.org/10.1038/s41598-019-42335-2
  • Li, X., Wen, Y., Chen, X., Qie, Y., Cao, K.-F., Wee, A. K. S., & Adams, W. (2022). Correlations between photosynthetic heat tolerance and leaf anatomy and climatic niche in Asian mangrove trees. Plant Biology, 24(6), 960–966. https://doi.org/10.1111/plb.13460
  • Lukeš, P., Neuwirthová, E., Lhotáková, Z., Janoutová, R., & Albrechtová, J. (2020). Upscaling seasonal phenological course of leaf dorsiventral reflectance in radiative transfer model. Remote Sensing of Environment, 246, 111862. https://doi.org/10.1016/j.rse.2020.111862
  • Ma, K., Baret, F., Barroy, P., & Bousquet, L. (2007). A leaf optical properties model accounting for differences between the two faces. International Society for Photogrammetry and Remote Sensing.
  • Mancinelli, A. L., Yang, C.-P. H., Lindquist, P., Anderson, O. R., & Rabino, I. (1975). Photocontrol of anthocyanin synthesis. Plant Physiology, 55(2), 251–257. https://doi.org/10.1104/pp.55.2.251
  • Martin, M. E., & Aber, J. D. (1997). High spectral resolution Remote Sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecological Applications, 7(2), 431–443. https://doi.org/10.1890/1051-0761(1997)007[0431:HSRRSO]2.0.CO;2
  • McClendon, J. H. (1962). The relationship between the thickness of deciduous leaves and their maximum photosynthetic rate. American Journal of Botany, 49(4), 320–322. https://doi.org/10.1002/j.1537-2197.1962.tb14944.x
  • McClendon, J. H., & Fukshansky, L. (1990a). On the interpretation of absorption spectra of leaves–I. Introduction and the correction of leaf spectra for surface reflection. Photochemistry and Photobiology, 51(2), 203–210. https://doi.org/10.1111/j.1751-1097.1990.tb01704.x
  • McClendon, J. H., & Fukshansky, L. (1990b). On the interpretation of absorption spectra of leaves–II. The non-absorbed ray of the sieve effect and the mean optical pathlength in the remainder of the leaf. Photochemistry and Photobiology, 51(2), 211–216. https://doi.org/10.1111/j.1751-1097.1990.tb01705.x
  • Merzlyak, M. N., Chivkunova, O. B., Solovchenko, A. E., & Naqvi, K. R. (2008). Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. Journal of Experimental Botany, 59(14), 3903–3911. https://doi.org/10.1093/jxb/ern230
  • Mevik, B. H., & Wehrens, R. (2015). Introduction to the pls Package. Help section of the “Pls” package of R studio software, 1–23.
  • Middleton, E. M., Huemmrich, K. F., Zhang, Q., Campbell, P. K., & Landis, D. R. (2018). Photosynthetic efficiency and vegetation stress. In Biophysical and Biochemical Characterization and Plant Species Studies (pp. 133–179). CRC Press.
  • Neuwirthová, E., Kuusk, A., Lhotáková, Z., Kuusk, J., Albrechtová, J., & Hallik, L. (2021). Leaf age matters in Remote Sensing: Taking ground truth for spectroscopic studies in hemiboreal deciduous trees with continuous leaf formation. Remote Sensing, 13(7), 1353. https://doi.org/10.3390/rs13071353
  • Neuwirthová, E., Lhotáková, Z., Lukeš, P., & Albrechtová, J. (2021). Leaf surface reflectance does not affect biophysical traits modelling from VIS-NIR spectra in plants with sparsely distributed trichomes. Remote Sensing, 13(20), 4144. https://doi.org/10.3390/rs13204144
  • Niinemets, Ü. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82(2), 453–469. https://doi.org/10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
  • Niklas, K. J. (1991). The elastic moduli and mechanics of populus tremuloides (salicaceae) petioles in bending and torsion. American Journal of Botany, 78(7), 989–996. https://doi.org/10.1002/j.1537-2197.1991.tb14503.x
  • O’Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2), 368–373. https://doi.org/10.1007/BF01248568
  • Ourcival, J. M., Joffre, R., & Rambal, S. (1999). Exploring the relationships between reflectance and anatomical and biochemical properties in quercus ilex leaves. New Phytologist, 143(2), 351–364. https://doi.org/10.1046/j.1469-8137.1999.00456.x
  • Parry, C., Blonquist, J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship: The optical/absolute chlorophyll relationship. Plant, Cell & Environment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324
  • Pastenes, C. (2004). Leaf movements and photoinhibition in relation to water stress in field-grown beans. Journal of Experimental Botany, 56(411), 425–433. https://doi.org/10.1093/jxb/eri061
  • Porra, R., Thompson, W., & Kriedemann, P. (1989). Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-B extracted with 4 different solvents—verification of the concentration. Biochimica Et Biophysica Acta, 975(3), 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Roden, J. S. (2003). Modeling the light interception and carbon gain of individual fluttering aspen (Populus tremuloides Michx) leaves. Trees, 17(2), 117–126. https://doi.org/10.1007/s00468-002-0213-3
  • Serbin, S. P., Singh, A., Mcneil, B. E., Kingdon, C. C., & Townsend, P. A. (2014). Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecological Applications, 24(7), 19.
  • Shi, H., Jiang, J., Jacquemoud, S., Xiao, Z., & Ma, M. (2023). Estimating leaf mass per area with leaf radiative transfer model. Remote Sensing of Environment, 286, 113444. https://doi.org/10.1016/j.rse.2022.113444
  • Shull, C. A. (1929). A spectrophotometric study of reflection of light from leaf surfaces. Botanical Gazette, 87(5), 583–607. https://doi.org/10.1086/333965
  • Singh, A., Serbin, S. P., McNeil, B. E., Kingdon, C. C., & Townsend, P. A. (2015). Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecological Applications, 25(8), 2180–2197. https://doi.org/10.1890/14-2098.1
  • Slaton, M. R., Hunt, E. R., & Smith, W. K. (2001). Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany, 88(2), 278–284. https://doi.org/10.2307/2657019
  • Slaton, M. R., & Smith, W. K. (2002). Mesophyll architecture and cell exposure to intercellular air space in Alpine, desert, and forest species. International Journal of Plant Sciences, 163(6), 937–948. https://doi.org/10.1086/342517
  • Stuckens, J., Verstraeten, W. W., Delalieux, S., Swennen, R., & Coppin, P. (2009). A dorsiventral leaf radiative transfer model: Development, validation and improved model inversion techniques. Remote Sensing of Environment, 113(12), 2560–2573. https://doi.org/10.1016/j.rse.2009.07.014
  • Terashima, I., Hanba, Y. T., Tholen, D., & Niinemets, Ü. (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155(1), 108–116. https://doi.org/10.1104/pp.110.165472
  • Théroux-Rancourt, G., Jenkins, M. R., Brodersen, C. R., McElrone, A., Forrestel, E. J., & Earles, J. M. (2020). Digitally deconstructing leaves in 3D using X-ray microcomputed tomography and machine learning. Applications in Plant Sciences, 8(7), e11380. https://doi.org/10.1002/aps3.11380
  • Turrell, F. M. (1939). The relation between chlorophyll concentration and the internal surface of mesomorphic and xeromorphic leaves grown under artificial light. Proceedings of the Iowa Academy of Science, 46(1), 107–117.
  • Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing of Environment, 16(2), 125–141. https://doi.org/10.1016/0034-42578490057-9
  • Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., North, P., & Moreno, J. (2019). Quantifying vegetation biophysical variables from Imaging Spectroscopy data: A review on retrieval methods. Surveys in Geophysics, 40(3), 589–629. https://doi.org/10.1007/s10712-018-9478-y
  • Verrelst, J., Rivera, J. P., Alonso, L., & Moreno, J. (2011). ARTMO: An automated radiative transfer models operator toolbox for automated retrieval of biophysical parameters through model inversion. 9.
  • Villar, R., Ruiz-Robleto, J., Ubera, J. L., & Poorter, H. (2013). Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. American Journal of Botany, 100(10), 1969–1980. https://doi.org/10.3732/ajb.1200562
  • Vogelmann, T. C. (1993). Plant Tissue Optics. Annual Review of Plant Biolog, 44(1), 231–251. https://doi.org/10.1146/annurev.pp.44.060193.001311
  • Wang, Z., Townsend, P. A., & Kruger, E. L. (2022). Leaf spectroscopy reveals divergent inter- and intra-species foliar trait covariation and trait–environment relationships across NEON domains. New Phytologist, 235(3), 923–938. https://doi.org/10.1111/nph.18204
  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • Woolley, J. T. (1971). Reflectance and transmittance of light by leaves. Plant Physiology, 47(5), 656–662. https://doi.org/10.1104/pp.47.5.656
  • Wu, S., Zeng, Y., Hao, D., Liu, Q., Li, J., Chen, X., Asrar, G. R., Yin, G., Wen, J., Yang, B., Zhu, P., & Chen, M. (2021). Quantifying leaf optical properties with spectral invariants theory. Remote Sensing of Environment, 253, 112131. https://doi.org/10.1016/j.rse.2020.112131
  • Yang, S.-J., Sun, M., Zhang, Y.-J., Cochard, H., & Cao, K.-F. (2014). Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (sinarundinaria nitida) to contrasting light environments. Plant Ecology, 215(1), 97–109. https://doi.org/10.1007/s11258-013-0281-z
  • Zhang, X., Jin, G., & Liu, Z. (2019). Contribution of leaf anatomical traits to leaf mass per area among canopy layers for five coexisting broadleaf species across shade tolerances at a regional scale. Forest Ecology and Management, 452, 117569. https://doi.org/10.1016/j.foreco.2019.117569