357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Real-time identification of collapsed buildings triggered by natural disasters using a modified object-detection network with quasi-panchromatic images

, &
Article: 2318357 | Received 09 Mar 2023, Accepted 08 Feb 2024, Published online: 18 Feb 2024

References

  • Bai, Y., Hu, J., Su, J., Liu, X., Liu, H., He, X., Meng, S., Mas, E., & Koshimura, S. (2020). Pyramid pooling module-based semi-siamese network: A benchmark model for assessing building damage from xBD satellite imagery datasets. Remote Sensing, 12(24), 4055. https://doi.org/10.3390/rs12244055
  • Bilham, R. (2010). Lessons from the Haiti earthquake. Nature, 463(7283), 878–21. https://doi.org/10.1038/463878a
  • Brunner, D., Lemoine, G., & Bruzzone, L. (2010). Earthquake damage assessment of buildings using vhr optical and sar imagery. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 48(5), 2403–2420. https://doi.org/10.1109/TGRS.2009.2038274
  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision & Pattern Recognition. http://refhub.elsevier.com/S0034-4257(22)00107-9/rf0040
  • Dubois, D., & Lepage, R. (2013). Automated building damage classification for the case of the 2010 Haiti earthquake. Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, VIC, Australia (pp. 695–698).
  • Galanis, M., Rao, K., Yao, X., Tsai, Y., Ventura, J., & Fricker, G. A. (2021). Damagemap: A post-wildfire damaged buildings classifier. International Journal of Disaster Risk Reduction, 65, 65. https://doi.org/10.1016/j.ijdrr.2021.102540
  • Ge, J., Tang, H., & Ji, C. (2023). Self-incremental learning for rapid identification of collapsed buildings triggered by natural disasters. Remote Sensing, 15(15), 3909. https://doi.org/10.3390/rs15153909
  • Ge, J., Tang, H., Yang, N., & Hu, Y. (2022). Rapid identification of damaged buildings using incremental learning with transferred data from historical natural disaster cases. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 105–128. https://doi.org/10.1016/j.isprsjprs.2022.11.010
  • Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H., & Gaston, M. (2019). xBD: A dataset for assessing building damage from satellite imagery. https://arxiv.org/abs/1911.09296
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1512.03385
  • Hossain, A. S. M. F., Adhikari, T. L., Ansary, M. A., & Bari, Q. H. (2015). Characteristics and consequence of Nepal earthquake 2015: A review. Geotechnical Engineering Journal of the SeagS&Agssfa, 46, 114–120. https://www.researchgate.net/publication/286443544
  • Hou, B., Ren, Z., Zhao, W., Wu, Q., & Jiao, L. (2019). Object detection in high-resolution panchromatic images using deep models and spatial template matching. IEEE Transactions on Geoscience & Remote Sensing, 1–15. https://doi.org/10.1109/TGRS.2019.2942103
  • Huang, W., Tang, H., & Xu, P. (2022). OEC-RNN: Object-oriented delineation of rooftops with edges and corners using the recurrent neural network from the aerial images. IEEE Transactions on Geoscience and Remote Sensing, 60, 5604912. https://doi.org/10.1109/TGRS.2021.3076098
  • Hu, Y., Liu, C., Li, Z., Xu, J., Han, Z., & Guo, J. (2022). Few-shot building footprint shape classification with relation network. ISPRS International Journal of Geo-Information, 11(5), 311. https://doi.org/10.3390/ijgi11050311
  • Hu, Y., & Tang, H. (2021). On the generalization ability of a global model for rapid building mapping from heterogeneous satellite images of multiple natural disaster scenarios. Remote Sensing, 13(5), 984. https://doi.org/10.3390/rs13050984
  • Immink, K. A. S., & Weber, J. H. (2014). Minimum Pearson distance detection for multilevel channels with gain and/or offset mismatch. IEEE Transactions on Information Theory / Professional Technical Group on Information Theory, 60(10), 5966–5974. https://doi.org/10.1109/TIT.2014.2342744
  • Janalipour, M., & Mohammadzadeh, A. (2018). Evaluation of effectiveness of three fuzzy systems and three texture extraction methods for building damage detection from post-event LiDAR data. International Journal of Digital Earth, 11(12), 1241–1268. https://doi.org/10.1080/17538947.2017.1387818
  • Jang, E., Gu, S., & Poole, B. (2017). Categorical reparameterization with Gumbel-Softmax. Proceedings of the 5th International Conference on Learning Representations, April 24 - 26, 2017, Toulon, France. https://doi.org/10.48550/arXiv.1611.01144
  • Ju, Y., Xu, Q., Jin, S., Li, W., Su, Y., Dong, X., & Guo, Q. (2022). Loess landslide detection using object detection algorithms in northwest China. Remote Sensing, 14(5), 1182. https://doi.org/10.3390/rs14051182
  • Klonus, S., Tomowski, D., Ehlers, M., Reinartz, P., & Michel, U. (2012). Combined edge segment texture analysis for the detection of damaged buildings in crisis areas. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal Of, 5(4), 1118–1128. https://doi.org/10.1109/JSTARS.2012.2205559
  • Li, H., He, Y., Xu, Q., Deng, J., Li, W., & Wei, Y. (2022). Detection and segmentation of loess landslides via satellite images: A two-phase framework. Landslides, 19(3), 673–686. https://doi.org/10.1007/s10346-021-01789-0
  • Li, D., Hong, Y., Wang, M., Tang, L., & Chen, L. (2021). What can surveying and remote sensing do for intelligent driving? Acta Geodaetica et Cartographica Sinica, 50(11), 1421–1431. https://doi.org/10.11947/j.AGCS.2021.20210280
  • Liu, Z., Tang, H., Feng, L., & Lyu, S. (2023). China building rooftop area: The first multi-annual (2016–2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from sentinel-2 imagery. Earth System Science Data, 15(8), 3547–3572. https://doi.org/10.5194/essd-15-3547-2023
  • Li, X., Yang, W., Ao, T., Li, H., & Chen, W. (2011). An improved approach of information extraction for earthquake-damaged buildings using high-resolution imagery. Journal of Earthquake and Tsunami, 5(4), 389–399. https://doi.org/10.1142/S1793431111001157
  • Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. Proceedings of the International Conference on Learning Representations, May 6-May 9, 2019, New Orleans, Louisiana, United States. https://doi.org/10.48550/arXiv.1711.05101
  • Lu, Y., Koperski, K., Kwan, C., & Li, J. (2021). Deep learning for effective refugee tent extraction near Syria–Jordan border. IEEE Geoscience & Remote Sensing Letters, 18(8), 1342–1346. https://doi.org/10.1109/LGRS.2020.2999354
  • Ma, J., & Qin, S. (2012). Automatic depicting algorithm of earthquake collapsed buildings with airborne high resolution image. Geoscience & Remote Sensing Symposium IEEE, 22-27, 939–942. https://doi.org/10.1109/IGARSS.2012.6351400
  • Miura, H., Aridome, T., & Matsuoka, M. (2020). Deep learning-based identification of collapsed, non-collapsed and blue tarp-covered buildings from post-disaster aerial images. Remote Sensing, 12(12), 1924. https://doi.org/10.3390/rs12121924
  • Motosaka, M., & Mitsuji, K. (2012). Building damage during the 2011 off the Pacific coast of Tohoku earthquake. Soils and Foundations, 52(5), 929–944. https://doi.org/10.1016/j.sandf.2012.11.012
  • Qing, Y., Ming, D., Wen, Q., Weng, Q., Xu, L., Chen, Y., Zhang, Y., & Zeng, B. (2022). Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level. International Journal of Applied Earth Observation and Geoinformation, 112, 102899. https://doi.org/10.1016/j.jag.2022.102899
  • Robinson, C., Gupta, R., Fobi Nsutezo, S., Pound, E., Ortiz, A., Rosa, M., White, K., Dodhia, R., Zolli, A., Birge, C., & Lavista Ferres, J. (2023). Turkey building damage assessment. https://www.microsoft.com/en-us/research/publication/turkey-earthquake-report/
  • Seresht, M. K., & Ghassemian, H. (2016). Remote sensing panchromatic images classification using moment features and decision fusion. Electrical Engineering, 1683–1688. IEEE. https://doi.org/10.1109/IranianCEE.2016.7585792
  • Shao, Z., & Cai, J. (2018). Remote sensing image fusion with deep convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1656–1669. https://doi.org/10.1109/JSTARS.2018.2805923
  • Shen, Y., Zhu, S., Yang, T., Chen, C., Pan, D., Chen, J., Xiao, L., & Du, Q. (2021). Bdanet: Multiscale convolutional neural network with cross-directional attention for building damage assessment from satellite images. IEEE Transactions on Geoscience & Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2021.3080580
  • Singh, R. P. (2010). Sharma, M. Complementary nature of surface and atmospheric parameters associated with Haiti earthquake of 12 January 2010. Natural Hazards and Earth System Sciences, 10(6), 1299–1305. https://doi.org/10.5194/nhess-10-1299-2010
  • Song, J., Wang, X., & Li, P. (2012). Urban building damage detection from VHR imagery by including temporal and spatial texture features. Journal of Remote Sensing, 16, 1233–1245. https://www.oalib.com/paper/1470650
  • Tong, X., Hong, Z., Liu, S., Zhang, X., Xie, H., Li, Z., Yang, S., Wang, W., & Bao, F. (2012). Building-damage detection using pre- and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 wenchuan earthquake. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 13–27. https://doi.org/10.1016/j.isprsjprs.2011.12.004
  • Wang, Q. (2022). Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies. Acta Geodaetica et Cartographica Sinica, 51(7), 1141–1152. http://xb.chinasmp.com/article/2022/1001-1595/20220706.htm
  • Wang, X., & Li, P. (2020). Extraction of urban building damage using spectral, height and corner information from VHR satellite images and airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 322–336. https://doi.org/10.1016/j.isprsjprs.2019.11.028
  • Wang, N., Li, W., Tao, R., & Du, Q. (2022). Graph-based block-level urban change detection using sentinel-2 time series. Remote Sensing of Environment, 274, 274. https://doi.org/10.1016/j.rse.2022.112993
  • Wang, J., Xu, C., & Shen, W. (2012). The coseismic coulomb stress changes induced by the 2010 mw 6.9 Yushu earthquake, China and its implication to earthquake hazards. Geomatics and Information Science of Wuhan University, 37, 1207–1211. In Chinese. https://doi.org/10.13203/j.whugis2012.10.029
  • Weber, E., & Kan, H. (2020). Building disaster damage assessment in satellite imagery with multi-temporal fusion. https://doi.org/10.48550/arXiv.2004.05525
  • Xu, Z., & Sun, J. (2018). Model-driven deep-learning. National Science Review, 5(1), 22–24. https://doi.org/10.1093/nsr/nwx099
  • Yu, H., Cheng, G., Zhang, Y., & Lu, X. (2011). The detection of earthquake-caused collapsed building information from LiDAR data and Aerophotograph. Remote Sensing for Land & Resources, 3, 77–81. In Chinese. https://doi.org/10.6046/gtzyyg.2011.03.14
  • Zhao, K., Liu, J., Wang, Q., W, X., & Tu, J. (2022). Road damage detection from post-disaster high-resolution remote sensing images based on TLD framework. IEEE Access, 10, 43552–43561. https://doi.org/10.1109/ACCESS.2022.3169031
  • Zheng, Z., Zhong, Y., Wang, J., Ma, A., & Zhang, L. (2021). Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters. Remote Sensing of Environment, 265, 112636. https://doi.org/10.1016/j.rse.2021.112636
  • Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8697–8710). https://arxiv.org/abs/1707.07012